Could Machine Learning Replace the Entire Weather Forecast System?

By Oliver Peckham

April 27, 2020

Just a few months ago, a series of major new weather and climate supercomputing investments were announced, including a £1.2 billion order for the world’s most powerful weather and climate supercomputer and a tripling of the U.S.’ operational supercomputing capacity for weather forecasting. Weather and climate modeling are among the most power-hungry use cases for supercomputers, and research and forecasting agencies often struggle to keep up with the computing needs of models that are, in many cases, simulating the atmosphere of the entire planet as granularly – and as regularly – as possible.

What if that all changed?

In a virtual keynote for the HPC-AI Advisory Council’s 2020 Stanford Conference, Peter Dueben outlined how machine learning might (or might not) begin to augment – and even, eventually, compete with – heavy-duty, supercomputer-powered climate models. Dueben is the coordinator for machine learning and AI activities at the European Centre for Medium-Range Weather Forecasts (ECMWF), a UK-based intergovernmental organization that houses two supercomputers and provides 24/7 operational weather services at several timescales. ECMWF is also the home of the Integrated Forecast System (IFS), which Dueben says is “probably one of the best forecast models in the world.”

Why machine learning at all?

The Earth, Dueben explained, is big. So big, in fact, that apart from being laborious, developing a representational model of the Earth’s weather and climate systems brick-by-brick isn’t achieving the accuracy that you might imagine. Despite the computing firepower behind weather forecasting, most models remain at a 10 kilometer resolution that doesn’t represent clouds, and the chaotic atmospheric dynamics and occasionally opaque interactions further complicate model outputs.

“However, on the other side, we have a huge number of observations,” Dueben said. “Just to give you an impression, ECMWF is getting hundreds of millions of observations onto the site every day. Some observations come from satellites, planes, ships, ground measurements, balloons…” This data – collected over the last several decades – constituted hundreds of petabytes if simulations and climate modeling results were included. 

“If you combine those two points, we have a very complex nonlinear system and we also have a lot of data,” he said. “There’s obviously lots of potential applications for machine learning in weather modeling.”

Potential applications of machine learning

“Machine learning applications are really spread all over the entire workflow of weather prediction,” Dueben said, breaking that workflow down into observations, data assimilation, numerical weather forecasting, and post-processing and dissemination. Across those areas, he explained, machine learning could be used for anything from weather data monitoring to learning the underlying equations of atmospheric motions.

By way of example, Dueben highlighted a handful of current, real-world applications. In one case, researchers had applied machine learning to detecting wildfires caused by lightning. Using observations for 15 variables (such as temperature, soil moisture and vegetation cover), the researchers constructed a machine learning-based decision tree to assess whether or not satellite observations included wildfires. The team achieved an accuracy of 77 percent – which, Deuben said, “doesn’t sound too great in principle,” but was actually “quite good.” 

Elsewhere, another team explored the use of machine learning to correct persistent biases in forecast model results. Dueben explained that researchers were examining the use of a “weak constraint” machine learning algorithm (in this case, 4D-Var), “which is a kind of algorithm that would be able to learn this kind of forecast error and correct it in the data assimilation process.” 

A visualization of the 4D-Var bias correction, with the lighter blue segments representing lower biases over time as the model learned. Image courtesy of Peter Dueben.

“We learn, basically, the bias,” he said, “and then once we have learned the bias, we can correct the bias of the forecast model by just adding forcing terms to the system.” Once 4D-Var was implemented on a sample of forecast model results, the biases were ameliorated. Though Dueben cautioned that the process is “still fairly simplistic,” a new collaboration with Nvidia is looking into more sophisticated ways of correcting those forecast errors with machine learning.

Dueben also outlined applications in post-processing. Much of modern weather forecasting focuses on ensemble methods, where a model is run many times to obtain a spread of possible scenarios – and as a result, probabilities of various outcomes. “We investigate whether we can correct the ensemble spread calculated from a small number of ensemble members via deep learning,” Dueben said. Once again, machine learning – when applied to a ten-member ensemble looking at temperatures in Europe – improved the results, reducing error in temperature spreads.

Can machine learning replace core functionality – or even the entire forecast system?

“One of the things that we’re looking into is the emulation of different permutation schemes,” Dueben said. Chief among those, at least initially, have been the radiation component of forecast models, which account for the fluxes of solar radiation between the ground, the clouds and the upper atmosphere. As a trial run, Dueben and his colleagues are using extensive radiation output data from a forecast model to train a neural network. “First of all, it’s very, very light,” Dueben said. “Second of all, it’s also going to be much more portable. Once we represent radiation with a deep neural network, you can basically port it to whatever hardware you want.”

Showing a pair of output images, one from the machine learning model and one from the forecast model, Dueben pointed out that it was hard to notice significant differences – and even refused to tell the audience which was which. Furthermore, he said, the model had achieved around a tenfold speedup. (“I’m quite confident that it will actually be much better than a factor of ten,” Dueben said.)

A comparison of radiation outputs from a machine learning emulator and the original model. Image courtesy of Peter Dueben.

Dueben and his colleagues have also scaled their tests up to more ambitious realms. They pulled hourly data on geopotential height (Z500) – which is related to air pressure – and trained a deep learning model to predict future changes in Z500 across the globe using only that historical data. “For this, no physical understanding is really required,” Dueben said, “and it turns out that it’s actually working quite well.”

Still, Dueben forced himself to face the crucial question.

“Is this the future?” he asked. “I have to say it’s probably not.”

There were several reasons for this. First, Dueben said, the simulations were unstable, eventually “blowing up” if they were stretched too far. “Second of all,” he said, “it’s also unknown how to increase complexity at this stage. We only have one field here.” Finally, he explained, there were only forty years of sufficiently detailed data with which to work.

Still, it wasn’t all pessimism. “It’s kind of unlikely that it’s going to fly and basically feed operational forecasting at one point,” he said. “However, having said this, there are now a number of papers coming out … where people are looking into this in a much, much more complicated way than we have done with really sophisticated convolutional networks … and they get, actually, quite good results. So who knows!”

The path forward

“The main challenge for machine learning in the community that we’re facing at the moment,” Dueben said, “is basically that we need to prove now that machine learning solutions can really be better than conventional tools – and we need to do this in the next couple of years.”

There are, of course, many roadblocks to that goal. Forecasting models are extraordinarily complicated; iterations on deep learning models require significant HPC resources to test and validate; and metrics of comparison among models are unclear. Dueben also outlined a series of major unknowns in machine learning for weather forecasting: could our explicit knowledge of atmospheric mechanisms be used to improve a machine learning forecast? Could researchers guarantee reproducibility? Could the tools be scaled effectively to HPC? The list went on.

“Many scientists are working on these dilemmas as we speak,” Dueben said, “and I’m sure we will have an enormous amount of progress in the next couple of years.” Outlining a path forward, Dueben emphasized a “mixture of a top-down and a bottom-up approach to link machine learning with weather and climate models.” Per his diagram, this would combine neutral networks based on human knowledge of earth systems with reliable benchmarks, scalability and better uncertainty quantification.

As far as where he sees machine learning for weather prediction in ten years?

“It could be that machine learning will have no long-term effect whatsoever – that it’s just a wave going through,” Dueben mused. “But on the other hand, it could well be that machine learning tools will actually replace almost all conventional models that we’re working with.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here at HPCwire

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire