SuperMUC-NG Enables Innovative Science with ‘Best Scientific Visualization’

By Rob Farber

May 7, 2020

Ranked the 9th fastest supercomputer in the world as of the November 2019 Top500 list, SuperMUC-NG located at the Leibniz Supercomputing Centre (LRZ) is powering innovative and energy efficient science in Europe, and delivering ground-breaking visualization results. It is designed as a general-purpose system to support applications across all scientific domains – life sciences, meteorology, geophysics, and climatology, to name a few. Astrophysics has been a dominant user group on LRZ’s supercomputing systems. And most recently LRZ has made their supercomputing resources available for COVID-19 related research.

Built by Lenovo, the SuperMUC-NG system is powered by Intel Xeon Scalable processors and utilizes an Intel OmniPath fabric interconnect. Astrophysicist Hans-Thomas Janka (Scientist, Max-Plank-Institute for Astrophysics and lecturer at the Technical University of Munich) observes, “We are insatiable when it comes to data volumes and computing power.” He continues, “We get a lot of data from stars and explosions from the cosmos by measuring radiation, elementary particles or gravitational waves. But we can only really observe a few developments. Therefore, astrophysicists develop models for evaluation and calculate them with the help of mathematical and physical equations. This easily produces terabytes of data that we can only analyze or visualize with high performance computers.” [i]

Dubbed the “next geneneration” system as indicated by the “-NG” designation, the benefits of the new SuperMUC-NG system will be felt by many as LRZ supplies its high performance computing resources to German national and international research teams. LRZ is a member of the Gauss Centre for Supercomputing (GCS), which combines the three national centers, namely High Performance Computing Center Stuttgart (HLRS), Jülich Supercomputing Centre (JSC), and Leibniz Supercomputing Centre (LRZ), into Germany’s foremost supercomputing institution.[ii]

In a recent development, researchers can use the SuperMUC-NG and the infrastructure of the LRZ for COVID-19 research including the search for vaccines and therapeutics, analyzing and forecasting spread scenarios for contingency planning, as well as exploring the virus and its behavior. [iii]

Dr. Janka explains the extraordinary scientific impact of foundational turbulence calculations performed on the earlier SuperMUC clusters, “Previously, astrophysicists could only perform much smaller calculations and thus only calculate two-dimensional models. For us, SuperMUC was a gift. Even three-dimensional simulations became possible. That was a huge breakthrough for us.” [iv] His statement is based on simulated results that consumed more than 570 million core hours on the earlier clusters.

SuperMUC-NG allows even more detailed models

SuperMUC-NG significantly augments the abilities of researchers to advance the state-of-the-art in research. For example, a team of researchers led by Australian National University (ANU) Professor Christoph Federrath used the system to run the largest magneto-hydrodynamic (MHD) simulation of astrophysical turbulence ever performed. [v] In particular, the inclusion of magnetic fields made the computation twice as challenging. The details of this foundational simulation work are discussed in the 2016 article “The world’s largest turbulence simulations”.

Using Software Defined Visualization (SDVis), the performance benefits and capabilities of the SuperMUC-NG hardware made it possible for a team of experts collaborating with Luigi Iapichino and Salvatore Cielo at LRZ to visualize simulation results using static 3D grid resolutions as high as 100483. “This unprecedented resolution allows for a dynamic range of four orders of magnitude in length scale”. The resolution is extraordinary and the team was able to report that these extreme scale visualizations demonstrate an excellent quantitative characterization of the gas Mach number as a function of spatial scale (the so-called structure function) with theoretical models in both the supersonic and subsonic regimes. [vi]

This visualization work was selected as a finalist in the Supercomputing 2019 “Best Scientific Visualization” contest held in Denver, Colorado (Nov. 17-22). [vii] The LRZ YouTube video titled “Visualizing the world’s largest turbulence simulation” describes the work and illustrates the fine details and dynamics that can be seen in the LRZ simulations at this extreme resolution.

A collaborative effort

The team partnered with visualization experts at LRZ and Intel to create the scientific visualizations presented at SC19. [viii] Each snapshot required more than 23 terabytes of disk space, creating an enormous amount of data to visualize. Using the Intel OSPRay engine and VisIt, the team was able to take advantage of nearly all of SuperMUC-NG’s 6,336 nodes. [ix] The Intel OSPRay library is an open source, scalable, and portable ray tracing engine (e.g. OSPRay) that delivers interactive, high-fidelity visualizations using Intel Architecture CPUs and is part of the Intel oneAPI Rendering Toolkit.  The VisIt application is an open-source interactive parallel visualization and graphical analysis tool for viewing scientific data.

The following images illustrate some of the minute details in the LRZ turbulence data. Figure 1 shows the density of the turbulent gas, plus some velocity streamlines.  The data are explored in “slabs”, as the full box would contain too many small details.

Figure 1: Sample ray-tracing plus velocity streamlines rendering of the 10048^3 hydrodynamic simulation, using VisIt and OSPRay on SuperMUC-NG. The displayed data corresponds to a slab with a volume of 10% of the full data cube.  (Source: SC’19 proceedings)

Figure 2 reflects a first-time demonstration that the extreme resolution 11563 model can resolve the transition between the two sonic scales. The team reports, “This in turns lets scientists infer the width distribution of filamentary structures in star-forming regions and ultimately the critical density for the formation of stars.”[x]

Figure 2: Volume rendering of the gas density structures associated with the sonic scale (i.e. regions with the gas velocity transitions from supersonic to subsonic) in the MHD simulation with grid resolution of 11523

Not just limited to astrophysics, extreme-scale astrophysics turbulence simulations can also help shed light on the general nature of  turbulent flow problems, including those found in Earth-bound cases.

Capitalizing on a four-fold increase in performance

The LRZ team built and deployed a custom version of the VisIt software in order to fully utilize the high degree of parallelism (number of cores per node and large vector registers) provided by the SuperMUC-NG Intel Xeon Platinum 8174 processors. The team writes, “This version integrates the Intel OSPRay rendering engine, embodying the software defined visualization concept, optimized for CPU usage without the need of accelerators. OSPRay uses Intel Threading Building Blocks (Intel TBB) for parallel work sharing, and integrates additional features […] which are absent in the standard version of VisIt.”

LRZ reports the new Intel Xeon Scalable processors (SKX in the following graph) to deliver much improved scaling and performance compared to the SuperMUC Phase 2 Intel Xeon E5-2697 v3 processors (HSW).[xi] The improvement can be seen in the comparative scaling results reported by the LRZ visualization team when creating their visualizations included below. The introduction of OSPRay (yellow and red lines) brings a further 8x speedup with respect to older methods (blue line). (Note the log scale of the y-axis.)

Figure 3: Upper panel: VisIt-OSPRay node-level scaling behavior over MPI tasks (Intel TBB always at work). The yellow line shows the scaling for a SuperMUC-NG Intel Xeon Platinum node and, for comparison, for a SuperMUC Phase-2 Intel Xeon E5-2697 v3 node (red line). Moreover, for the best-scaling algorithm before OSPRay (kernel-based ray-casting, blue line), two scaling points are shown. Lower pane: VisIt-OSPRay strong scaling for tasks of the presented visualization, using one (yellow line) or four (red line) MPI tasks per node. The reported time to solution refers to a single snapshot of the tomography of the 10048^3 hydrodynamic simulation simulation, from 128 to 3076 nodes (i.e. one half of the whole SuperMUC-NG). Percentile confidence intervals after 20 measures are shown when significant. (Source: SC’19 proceedings)

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at info@techenablement.com.

[i] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[ii] https://doku.lrz.de/display/PUBLIC/Books+with+results+on+LRZ+HPC+Systems

[iii] https://www.lrz.de/wir/newsletter/neu/

[iv] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[v] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[vi] https://sc19.supercomputing.org/proceedings/sci_viz/sci_viz_files/svs103s2-file1.pdf

[vii] Visualizing the world’s largest turbulence simulation

[viii] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[ix] ibid

[x] ibid

[xi] https://www.hpcwire.com/2018/09/26/germany-celebrates-launch-of-two-fastest-supercomputers/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire