SuperMUC-NG Enables Innovative Science with ‘Best Scientific Visualization’

By Rob Farber

May 7, 2020

Ranked the 9th fastest supercomputer in the world as of the November 2019 Top500 list, SuperMUC-NG located at the Leibniz Supercomputing Centre (LRZ) is powering innovative and energy efficient science in Europe, and delivering ground-breaking visualization results. It is designed as a general-purpose system to support applications across all scientific domains – life sciences, meteorology, geophysics, and climatology, to name a few. Astrophysics has been a dominant user group on LRZ’s supercomputing systems. And most recently LRZ has made their supercomputing resources available for COVID-19 related research.

Built by Lenovo, the SuperMUC-NG system is powered by Intel Xeon Scalable processors and utilizes an Intel OmniPath fabric interconnect. Astrophysicist Hans-Thomas Janka (Scientist, Max-Plank-Institute for Astrophysics and lecturer at the Technical University of Munich) observes, “We are insatiable when it comes to data volumes and computing power.” He continues, “We get a lot of data from stars and explosions from the cosmos by measuring radiation, elementary particles or gravitational waves. But we can only really observe a few developments. Therefore, astrophysicists develop models for evaluation and calculate them with the help of mathematical and physical equations. This easily produces terabytes of data that we can only analyze or visualize with high performance computers.” [i]

Dubbed the “next geneneration” system as indicated by the “-NG” designation, the benefits of the new SuperMUC-NG system will be felt by many as LRZ supplies its high performance computing resources to German national and international research teams. LRZ is a member of the Gauss Centre for Supercomputing (GCS), which combines the three national centers, namely High Performance Computing Center Stuttgart (HLRS), Jülich Supercomputing Centre (JSC), and Leibniz Supercomputing Centre (LRZ), into Germany’s foremost supercomputing institution.[ii]

In a recent development, researchers can use the SuperMUC-NG and the infrastructure of the LRZ for COVID-19 research including the search for vaccines and therapeutics, analyzing and forecasting spread scenarios for contingency planning, as well as exploring the virus and its behavior. [iii]

Dr. Janka explains the extraordinary scientific impact of foundational turbulence calculations performed on the earlier SuperMUC clusters, “Previously, astrophysicists could only perform much smaller calculations and thus only calculate two-dimensional models. For us, SuperMUC was a gift. Even three-dimensional simulations became possible. That was a huge breakthrough for us.” [iv] His statement is based on simulated results that consumed more than 570 million core hours on the earlier clusters.

SuperMUC-NG allows even more detailed models

SuperMUC-NG significantly augments the abilities of researchers to advance the state-of-the-art in research. For example, a team of researchers led by Australian National University (ANU) Professor Christoph Federrath used the system to run the largest magneto-hydrodynamic (MHD) simulation of astrophysical turbulence ever performed. [v] In particular, the inclusion of magnetic fields made the computation twice as challenging. The details of this foundational simulation work are discussed in the 2016 article “The world’s largest turbulence simulations”.

Using Software Defined Visualization (SDVis), the performance benefits and capabilities of the SuperMUC-NG hardware made it possible for a team of experts collaborating with Luigi Iapichino and Salvatore Cielo at LRZ to visualize simulation results using static 3D grid resolutions as high as 100483. “This unprecedented resolution allows for a dynamic range of four orders of magnitude in length scale”. The resolution is extraordinary and the team was able to report that these extreme scale visualizations demonstrate an excellent quantitative characterization of the gas Mach number as a function of spatial scale (the so-called structure function) with theoretical models in both the supersonic and subsonic regimes. [vi]

This visualization work was selected as a finalist in the Supercomputing 2019 “Best Scientific Visualization” contest held in Denver, Colorado (Nov. 17-22). [vii] The LRZ YouTube video titled “Visualizing the world’s largest turbulence simulation” describes the work and illustrates the fine details and dynamics that can be seen in the LRZ simulations at this extreme resolution.

A collaborative effort

The team partnered with visualization experts at LRZ and Intel to create the scientific visualizations presented at SC19. [viii] Each snapshot required more than 23 terabytes of disk space, creating an enormous amount of data to visualize. Using the Intel OSPRay engine and VisIt, the team was able to take advantage of nearly all of SuperMUC-NG’s 6,336 nodes. [ix] The Intel OSPRay library is an open source, scalable, and portable ray tracing engine (e.g. OSPRay) that delivers interactive, high-fidelity visualizations using Intel Architecture CPUs and is part of the Intel oneAPI Rendering Toolkit.  The VisIt application is an open-source interactive parallel visualization and graphical analysis tool for viewing scientific data.

The following images illustrate some of the minute details in the LRZ turbulence data. Figure 1 shows the density of the turbulent gas, plus some velocity streamlines.  The data are explored in “slabs”, as the full box would contain too many small details.

Figure 1: Sample ray-tracing plus velocity streamlines rendering of the 10048^3 hydrodynamic simulation, using VisIt and OSPRay on SuperMUC-NG. The displayed data corresponds to a slab with a volume of 10% of the full data cube.  (Source: SC’19 proceedings)

Figure 2 reflects a first-time demonstration that the extreme resolution 11563 model can resolve the transition between the two sonic scales. The team reports, “This in turns lets scientists infer the width distribution of filamentary structures in star-forming regions and ultimately the critical density for the formation of stars.”[x]

Figure 2: Volume rendering of the gas density structures associated with the sonic scale (i.e. regions with the gas velocity transitions from supersonic to subsonic) in the MHD simulation with grid resolution of 11523

Not just limited to astrophysics, extreme-scale astrophysics turbulence simulations can also help shed light on the general nature of  turbulent flow problems, including those found in Earth-bound cases.

Capitalizing on a four-fold increase in performance

The LRZ team built and deployed a custom version of the VisIt software in order to fully utilize the high degree of parallelism (number of cores per node and large vector registers) provided by the SuperMUC-NG Intel Xeon Platinum 8174 processors. The team writes, “This version integrates the Intel OSPRay rendering engine, embodying the software defined visualization concept, optimized for CPU usage without the need of accelerators. OSPRay uses Intel Threading Building Blocks (Intel TBB) for parallel work sharing, and integrates additional features […] which are absent in the standard version of VisIt.”

LRZ reports the new Intel Xeon Scalable processors (SKX in the following graph) to deliver much improved scaling and performance compared to the SuperMUC Phase 2 Intel Xeon E5-2697 v3 processors (HSW).[xi] The improvement can be seen in the comparative scaling results reported by the LRZ visualization team when creating their visualizations included below. The introduction of OSPRay (yellow and red lines) brings a further 8x speedup with respect to older methods (blue line). (Note the log scale of the y-axis.)

Figure 3: Upper panel: VisIt-OSPRay node-level scaling behavior over MPI tasks (Intel TBB always at work). The yellow line shows the scaling for a SuperMUC-NG Intel Xeon Platinum node and, for comparison, for a SuperMUC Phase-2 Intel Xeon E5-2697 v3 node (red line). Moreover, for the best-scaling algorithm before OSPRay (kernel-based ray-casting, blue line), two scaling points are shown. Lower pane: VisIt-OSPRay strong scaling for tasks of the presented visualization, using one (yellow line) or four (red line) MPI tasks per node. The reported time to solution refers to a single snapshot of the tomography of the 10048^3 hydrodynamic simulation simulation, from 128 to 3076 nodes (i.e. one half of the whole SuperMUC-NG). Percentile confidence intervals after 20 measures are shown when significant. (Source: SC’19 proceedings)

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at info@techenablement.com.

[i] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[ii] https://doku.lrz.de/display/PUBLIC/Books+with+results+on+LRZ+HPC+Systems

[iii] https://www.lrz.de/wir/newsletter/neu/

[iv] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[v] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[vi] https://sc19.supercomputing.org/proceedings/sci_viz/sci_viz_files/svs103s2-file1.pdf

[vii] Visualizing the world’s largest turbulence simulation

[viii] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[ix] ibid

[x] ibid

[xi] https://www.hpcwire.com/2018/09/26/germany-celebrates-launch-of-two-fastest-supercomputers/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Top500: Fugaku Still on Top; Perlmutter Debuts at #5

June 28, 2021

The 57th Top500, revealed today from the ISC 2021 digital event, showcases many of the same systems as the previous edition, with Fugaku holding its significant lead and only one new entrant in the top 10 cohort: the Perlmutter system at the DOE Lawrence Berkeley National Laboratory enters the list at number five with 65.69 Linpack petaflops. Perlmutter is the largest... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire