SuperMUC-NG Enables Innovative Science with ‘Best Scientific Visualization’

By Rob Farber

May 7, 2020

Ranked the 9th fastest supercomputer in the world as of the November 2019 Top500 list, SuperMUC-NG located at the Leibniz Supercomputing Centre (LRZ) is powering innovative and energy efficient science in Europe, and delivering ground-breaking visualization results. It is designed as a general-purpose system to support applications across all scientific domains – life sciences, meteorology, geophysics, and climatology, to name a few. Astrophysics has been a dominant user group on LRZ’s supercomputing systems. And most recently LRZ has made their supercomputing resources available for COVID-19 related research.

Built by Lenovo, the SuperMUC-NG system is powered by Intel Xeon Scalable processors and utilizes an Intel OmniPath fabric interconnect. Astrophysicist Hans-Thomas Janka (Scientist, Max-Plank-Institute for Astrophysics and lecturer at the Technical University of Munich) observes, “We are insatiable when it comes to data volumes and computing power.” He continues, “We get a lot of data from stars and explosions from the cosmos by measuring radiation, elementary particles or gravitational waves. But we can only really observe a few developments. Therefore, astrophysicists develop models for evaluation and calculate them with the help of mathematical and physical equations. This easily produces terabytes of data that we can only analyze or visualize with high performance computers.” [i]

Dubbed the “next geneneration” system as indicated by the “-NG” designation, the benefits of the new SuperMUC-NG system will be felt by many as LRZ supplies its high performance computing resources to German national and international research teams. LRZ is a member of the Gauss Centre for Supercomputing (GCS), which combines the three national centers, namely High Performance Computing Center Stuttgart (HLRS), Jülich Supercomputing Centre (JSC), and Leibniz Supercomputing Centre (LRZ), into Germany’s foremost supercomputing institution.[ii]

In a recent development, researchers can use the SuperMUC-NG and the infrastructure of the LRZ for COVID-19 research including the search for vaccines and therapeutics, analyzing and forecasting spread scenarios for contingency planning, as well as exploring the virus and its behavior. [iii]

Dr. Janka explains the extraordinary scientific impact of foundational turbulence calculations performed on the earlier SuperMUC clusters, “Previously, astrophysicists could only perform much smaller calculations and thus only calculate two-dimensional models. For us, SuperMUC was a gift. Even three-dimensional simulations became possible. That was a huge breakthrough for us.” [iv] His statement is based on simulated results that consumed more than 570 million core hours on the earlier clusters.

SuperMUC-NG allows even more detailed models

SuperMUC-NG significantly augments the abilities of researchers to advance the state-of-the-art in research. For example, a team of researchers led by Australian National University (ANU) Professor Christoph Federrath used the system to run the largest magneto-hydrodynamic (MHD) simulation of astrophysical turbulence ever performed. [v] In particular, the inclusion of magnetic fields made the computation twice as challenging. The details of this foundational simulation work are discussed in the 2016 article “The world’s largest turbulence simulations”.

Using Software Defined Visualization (SDVis), the performance benefits and capabilities of the SuperMUC-NG hardware made it possible for a team of experts collaborating with Luigi Iapichino and Salvatore Cielo at LRZ to visualize simulation results using static 3D grid resolutions as high as 100483. “This unprecedented resolution allows for a dynamic range of four orders of magnitude in length scale”. The resolution is extraordinary and the team was able to report that these extreme scale visualizations demonstrate an excellent quantitative characterization of the gas Mach number as a function of spatial scale (the so-called structure function) with theoretical models in both the supersonic and subsonic regimes. [vi]

This visualization work was selected as a finalist in the Supercomputing 2019 “Best Scientific Visualization” contest held in Denver, Colorado (Nov. 17-22). [vii] The LRZ YouTube video titled “Visualizing the world’s largest turbulence simulation” describes the work and illustrates the fine details and dynamics that can be seen in the LRZ simulations at this extreme resolution.

A collaborative effort

The team partnered with visualization experts at LRZ and Intel to create the scientific visualizations presented at SC19. [viii] Each snapshot required more than 23 terabytes of disk space, creating an enormous amount of data to visualize. Using the Intel OSPRay engine and VisIt, the team was able to take advantage of nearly all of SuperMUC-NG’s 6,336 nodes. [ix] The Intel OSPRay library is an open source, scalable, and portable ray tracing engine (e.g. OSPRay) that delivers interactive, high-fidelity visualizations using Intel Architecture CPUs and is part of the Intel oneAPI Rendering Toolkit.  The VisIt application is an open-source interactive parallel visualization and graphical analysis tool for viewing scientific data.

The following images illustrate some of the minute details in the LRZ turbulence data. Figure 1 shows the density of the turbulent gas, plus some velocity streamlines.  The data are explored in “slabs”, as the full box would contain too many small details.

Figure 1: Sample ray-tracing plus velocity streamlines rendering of the 10048^3 hydrodynamic simulation, using VisIt and OSPRay on SuperMUC-NG. The displayed data corresponds to a slab with a volume of 10% of the full data cube.  (Source: SC’19 proceedings)

Figure 2 reflects a first-time demonstration that the extreme resolution 11563 model can resolve the transition between the two sonic scales. The team reports, “This in turns lets scientists infer the width distribution of filamentary structures in star-forming regions and ultimately the critical density for the formation of stars.”[x]

Figure 2: Volume rendering of the gas density structures associated with the sonic scale (i.e. regions with the gas velocity transitions from supersonic to subsonic) in the MHD simulation with grid resolution of 11523

Not just limited to astrophysics, extreme-scale astrophysics turbulence simulations can also help shed light on the general nature of  turbulent flow problems, including those found in Earth-bound cases.

Capitalizing on a four-fold increase in performance

The LRZ team built and deployed a custom version of the VisIt software in order to fully utilize the high degree of parallelism (number of cores per node and large vector registers) provided by the SuperMUC-NG Intel Xeon Platinum 8174 processors. The team writes, “This version integrates the Intel OSPRay rendering engine, embodying the software defined visualization concept, optimized for CPU usage without the need of accelerators. OSPRay uses Intel Threading Building Blocks (Intel TBB) for parallel work sharing, and integrates additional features […] which are absent in the standard version of VisIt.”

LRZ reports the new Intel Xeon Scalable processors (SKX in the following graph) to deliver much improved scaling and performance compared to the SuperMUC Phase 2 Intel Xeon E5-2697 v3 processors (HSW).[xi] The improvement can be seen in the comparative scaling results reported by the LRZ visualization team when creating their visualizations included below. The introduction of OSPRay (yellow and red lines) brings a further 8x speedup with respect to older methods (blue line). (Note the log scale of the y-axis.)

Figure 3: Upper panel: VisIt-OSPRay node-level scaling behavior over MPI tasks (Intel TBB always at work). The yellow line shows the scaling for a SuperMUC-NG Intel Xeon Platinum node and, for comparison, for a SuperMUC Phase-2 Intel Xeon E5-2697 v3 node (red line). Moreover, for the best-scaling algorithm before OSPRay (kernel-based ray-casting, blue line), two scaling points are shown. Lower pane: VisIt-OSPRay strong scaling for tasks of the presented visualization, using one (yellow line) or four (red line) MPI tasks per node. The reported time to solution refers to a single snapshot of the tomography of the 10048^3 hydrodynamic simulation simulation, from 128 to 3076 nodes (i.e. one half of the whole SuperMUC-NG). Percentile confidence intervals after 20 measures are shown when significant. (Source: SC’19 proceedings)

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at info@techenablement.com.

[i] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[ii] https://doku.lrz.de/display/PUBLIC/Books+with+results+on+LRZ+HPC+Systems

[iii] https://www.lrz.de/wir/newsletter/neu/

[iv] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[v] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[vi] https://sc19.supercomputing.org/proceedings/sci_viz/sci_viz_files/svs103s2-file1.pdf

[vii] Visualizing the world’s largest turbulence simulation

[viii] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[ix] ibid

[x] ibid

[xi] https://www.hpcwire.com/2018/09/26/germany-celebrates-launch-of-two-fastest-supercomputers/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

White House Scientific Integrity Report Addresses AI and ML Ethics

January 26, 2022

Earlier this month, the White House Office of Science and Technology Policy (OSTP) Scientific Integrity Task Force released a report titled “Protecting the Integrity of Government Science.” While broad-based and over Read more…

IBM Quantum Debuts Classical Entanglement Forging to Expand Simulation Capabilities

January 26, 2022

IBM last week reported a new technique – entanglement forging – that uses both quantum and classical computing resources to double the size of select simulation problems that can be solved on current quantum computer Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of all sizes. The new HPC-as-a-Service is part of the TruScale Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new ThreadArch multi-thread processor technology that is intended to h Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topologic Read more…

AWS Solution Channel

Register for the AWS “Speeds n’ Feeds” event on Feb. 9th

Since the debut of the first ‘Beowulf’ cluster in 1994, HPC has been a race between technologists squeezing as much performance as possible from hardware, and scale economics driving mass-production prices to affordable levels. Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new Thread Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

IBM Watson Health Finally Sold by IBM After 11 Months of Rumors

January 21, 2022

IBM has sold its underachieving IBM Watson Health unit for an undisclosed price tag to a global investment firm after almost a year’s worth of rumors that sai Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire