SuperMUC-NG Enables Innovative Science with ‘Best Scientific Visualization’

By Rob Farber

May 7, 2020

Ranked the 9th fastest supercomputer in the world as of the November 2019 Top500 list, SuperMUC-NG located at the Leibniz Supercomputing Centre (LRZ) is powering innovative and energy efficient science in Europe, and delivering ground-breaking visualization results. It is designed as a general-purpose system to support applications across all scientific domains – life sciences, meteorology, geophysics, and climatology, to name a few. Astrophysics has been a dominant user group on LRZ’s supercomputing systems. And most recently LRZ has made their supercomputing resources available for COVID-19 related research.

Built by Lenovo, the SuperMUC-NG system is powered by Intel Xeon Scalable processors and utilizes an Intel OmniPath fabric interconnect. Astrophysicist Hans-Thomas Janka (Scientist, Max-Plank-Institute for Astrophysics and lecturer at the Technical University of Munich) observes, “We are insatiable when it comes to data volumes and computing power.” He continues, “We get a lot of data from stars and explosions from the cosmos by measuring radiation, elementary particles or gravitational waves. But we can only really observe a few developments. Therefore, astrophysicists develop models for evaluation and calculate them with the help of mathematical and physical equations. This easily produces terabytes of data that we can only analyze or visualize with high performance computers.” [i]

Dubbed the “next geneneration” system as indicated by the “-NG” designation, the benefits of the new SuperMUC-NG system will be felt by many as LRZ supplies its high performance computing resources to German national and international research teams. LRZ is a member of the Gauss Centre for Supercomputing (GCS), which combines the three national centers, namely High Performance Computing Center Stuttgart (HLRS), Jülich Supercomputing Centre (JSC), and Leibniz Supercomputing Centre (LRZ), into Germany’s foremost supercomputing institution.[ii]

In a recent development, researchers can use the SuperMUC-NG and the infrastructure of the LRZ for COVID-19 research including the search for vaccines and therapeutics, analyzing and forecasting spread scenarios for contingency planning, as well as exploring the virus and its behavior. [iii]

Dr. Janka explains the extraordinary scientific impact of foundational turbulence calculations performed on the earlier SuperMUC clusters, “Previously, astrophysicists could only perform much smaller calculations and thus only calculate two-dimensional models. For us, SuperMUC was a gift. Even three-dimensional simulations became possible. That was a huge breakthrough for us.” [iv] His statement is based on simulated results that consumed more than 570 million core hours on the earlier clusters.

SuperMUC-NG allows even more detailed models

SuperMUC-NG significantly augments the abilities of researchers to advance the state-of-the-art in research. For example, a team of researchers led by Australian National University (ANU) Professor Christoph Federrath used the system to run the largest magneto-hydrodynamic (MHD) simulation of astrophysical turbulence ever performed. [v] In particular, the inclusion of magnetic fields made the computation twice as challenging. The details of this foundational simulation work are discussed in the 2016 article “The world’s largest turbulence simulations”.

Using Software Defined Visualization (SDVis), the performance benefits and capabilities of the SuperMUC-NG hardware made it possible for a team of experts collaborating with Luigi Iapichino and Salvatore Cielo at LRZ to visualize simulation results using static 3D grid resolutions as high as 100483. “This unprecedented resolution allows for a dynamic range of four orders of magnitude in length scale”. The resolution is extraordinary and the team was able to report that these extreme scale visualizations demonstrate an excellent quantitative characterization of the gas Mach number as a function of spatial scale (the so-called structure function) with theoretical models in both the supersonic and subsonic regimes. [vi]

This visualization work was selected as a finalist in the Supercomputing 2019 “Best Scientific Visualization” contest held in Denver, Colorado (Nov. 17-22). [vii] The LRZ YouTube video titled “Visualizing the world’s largest turbulence simulation” describes the work and illustrates the fine details and dynamics that can be seen in the LRZ simulations at this extreme resolution.

A collaborative effort

The team partnered with visualization experts at LRZ and Intel to create the scientific visualizations presented at SC19. [viii] Each snapshot required more than 23 terabytes of disk space, creating an enormous amount of data to visualize. Using the Intel OSPRay engine and VisIt, the team was able to take advantage of nearly all of SuperMUC-NG’s 6,336 nodes. [ix] The Intel OSPRay library is an open source, scalable, and portable ray tracing engine (e.g. OSPRay) that delivers interactive, high-fidelity visualizations using Intel Architecture CPUs and is part of the Intel oneAPI Rendering Toolkit.  The VisIt application is an open-source interactive parallel visualization and graphical analysis tool for viewing scientific data.

The following images illustrate some of the minute details in the LRZ turbulence data. Figure 1 shows the density of the turbulent gas, plus some velocity streamlines.  The data are explored in “slabs”, as the full box would contain too many small details.

Figure 1: Sample ray-tracing plus velocity streamlines rendering of the 10048^3 hydrodynamic simulation, using VisIt and OSPRay on SuperMUC-NG. The displayed data corresponds to a slab with a volume of 10% of the full data cube.  (Source: SC’19 proceedings)

Figure 2 reflects a first-time demonstration that the extreme resolution 11563 model can resolve the transition between the two sonic scales. The team reports, “This in turns lets scientists infer the width distribution of filamentary structures in star-forming regions and ultimately the critical density for the formation of stars.”[x]

Figure 2: Volume rendering of the gas density structures associated with the sonic scale (i.e. regions with the gas velocity transitions from supersonic to subsonic) in the MHD simulation with grid resolution of 11523

Not just limited to astrophysics, extreme-scale astrophysics turbulence simulations can also help shed light on the general nature of  turbulent flow problems, including those found in Earth-bound cases.

Capitalizing on a four-fold increase in performance

The LRZ team built and deployed a custom version of the VisIt software in order to fully utilize the high degree of parallelism (number of cores per node and large vector registers) provided by the SuperMUC-NG Intel Xeon Platinum 8174 processors. The team writes, “This version integrates the Intel OSPRay rendering engine, embodying the software defined visualization concept, optimized for CPU usage without the need of accelerators. OSPRay uses Intel Threading Building Blocks (Intel TBB) for parallel work sharing, and integrates additional features […] which are absent in the standard version of VisIt.”

LRZ reports the new Intel Xeon Scalable processors (SKX in the following graph) to deliver much improved scaling and performance compared to the SuperMUC Phase 2 Intel Xeon E5-2697 v3 processors (HSW).[xi] The improvement can be seen in the comparative scaling results reported by the LRZ visualization team when creating their visualizations included below. The introduction of OSPRay (yellow and red lines) brings a further 8x speedup with respect to older methods (blue line). (Note the log scale of the y-axis.)

Figure 3: Upper panel: VisIt-OSPRay node-level scaling behavior over MPI tasks (Intel TBB always at work). The yellow line shows the scaling for a SuperMUC-NG Intel Xeon Platinum node and, for comparison, for a SuperMUC Phase-2 Intel Xeon E5-2697 v3 node (red line). Moreover, for the best-scaling algorithm before OSPRay (kernel-based ray-casting, blue line), two scaling points are shown. Lower pane: VisIt-OSPRay strong scaling for tasks of the presented visualization, using one (yellow line) or four (red line) MPI tasks per node. The reported time to solution refers to a single snapshot of the tomography of the 10048^3 hydrodynamic simulation simulation, from 128 to 3076 nodes (i.e. one half of the whole SuperMUC-NG). Percentile confidence intervals after 20 measures are shown when significant. (Source: SC’19 proceedings)

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at [email protected]

[i] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[ii] https://doku.lrz.de/display/PUBLIC/Books+with+results+on+LRZ+HPC+Systems

[iii] https://www.lrz.de/wir/newsletter/neu/

[iv] https://www.lrz.de/presse/ereignisse/2019-12-04_Interview-Prof-Janka-_EN/

[v] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[vi] https://sc19.supercomputing.org/proceedings/sci_viz/sci_viz_files/svs103s2-file1.pdf

[vii] Visualizing the world’s largest turbulence simulation

[viii] https://sciencenode.org/feature/How%20does%20a%20star%20form.php

[ix] ibid

[x] ibid

[xi] https://www.hpcwire.com/2018/09/26/germany-celebrates-launch-of-two-fastest-supercomputers/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This