In Australia, HPC Illuminates the Early Universe

By Oliver Peckham

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simulations of large swaths of the universe taking years to complete on powerful supercomputers. In a talk for the ICM Seminars series (hosted by the Interdisciplinary Centre for Mathematical and Computational Modelling University of Warsaw), Dr. Simon Mutch highlighted how Australian research organizations are working around the computational requirements to deliver insights into the origins of the universe as we know it.

Dr. Simon Mutch

The reionization of the universe – and why we should care about it

“Immediately after the Big Bang, the universe was filled mostly just with neutral hydrogen – there wasn’t really much else there,” said Mutch, who is a postdoctoral fellow at the University of Melbourne’s ASTRO 3D Centre of Excellence and a senior research data specialist for the Melbourne Data Analytics Platform. “But then there were gravitational perturbations that caused gas to collapse in on itself, and eventually stars and galaxies began to form, and those stars gave out light, which was of high enough energy to start to ionize the surrounding neutral gas, so it stripped electrons off that neutral gas and changed its properties.”

This ionization, he explained, spread into bubbles, and as galaxies grew in number and size, the bubbles began to overlap, eventually resulting in the total reionization of the universe – some 12.5 billion years ago. The relationship between these ionized bubbles and the galaxies that birthed them a major focus for Mutch and his colleagues. 

Over the course of billions of years, ionization bubbles grew to fill the entire universe. Image courtesy of Simon Mutch.

 “That’s really interesting, because it means that if we can observe this reionization signal … then we can infer something about the galaxies which are driving this reionization process.” Mutch said. “What’s even more interesting is that the reionization signal is sensitive to all galaxies.” In terms of the galaxies populating the universe, he explained, relatively faint galaxies are the most common – but also the most difficult to see. “By studying this reionization structure,” he said, “we can actually learn something about the very smallest, very faintest galaxies that we can’t actually see.” 

Mutch compared the process to dropping stones in a pond and studying the ripples to understand the shapes and sizes of each stone. “The main problem is: how do we connect the properties of galaxies to the signature of the bubbles that we see during reionization?” he said. “For that, we use cosmological simulations.”

The trouble with simulations

Cosmological simulations of galaxy formation build a chunk of the universe from the ground up, accounting for elements like gravity, dark matter, heating, cooling, turbulence, chemistry, supernovae, black holes, magnetic fields and more, which are all woven into hydrodynamical or mesh models.

“While these are incredibly powerful, they are extremely computationally intensive,” Mutch said. “That’s because there is a large dynamic range, both in terms of temporal and spatial resolution.” By way of examples, he discussed IllustrisTNG, a galaxy formation simulation one billion light years across that required 35 million CPU hours on the Hazel Hen supercomputer at the High Performance Computing Center (HLRS) in Stuttgart. Similarly, he said, the larger BlueTides simulation took 20 million CPU hours on the Blue Waters system at NCSA, nearly taking up the entire machine.

The necessary scale of simulating reionization compounded the high computational needs. “What we’re always doing is making this tradeoff between the amount of resolution we get in the simulation and the size of the simulation,” Mutch said. “This problem is particularly acute, though, if you’re talking about the early universe and reionization.” The reionization bubbles were tens of millions of light years across, so in order to produce a statistically relevant sample of them, you would need many bubbles – and a massive simulation.

Normally, researchers adjust parameters so they can match to the known universe nearby. But not much is known about the early universe – so instead, Mutch and his colleagues needed to run “many, many different realizations of the simulations” to test different models, feedback processes and other variables to see how they affected the ionized bubbles.

Finding a path through the cosmos

Tackling this uphill battle was the goal for the University of Melbourne’s Dark-ages, Reionization And Galaxy-formation Observables Numerical Simulation, or “DRAGONS,” program. (“We love our acronyms in astronomy,” Mutch said. “Everything needs to have a good acronym.”)

Thankfully, he said, the universe gave them a helping hand. Overall, the universe consists of around 70% dark energy, 25% dark matter and only 5% normal matter – what we interact with in our daily lives. “What this actually means is that we can do a pretty good job of simulating the position and the large-scale distribution of the matter by simply ignoring normal matter, and that makes things much easier,” Mutch said, explaining that they could ignore gas, shocks, star formation and more. “All we care about is getting the large-scale distribution of matter correct.”

The matter composition of the universe. Image courtesy of Simon Mutch.

So the researchers developed a N-body (particle) simulation that treated all the matter in the universe as collisionless. “We can pour all our computing power into doing this problem of gravity, essentially, and doing as big a simulation to as high a resolution as we possibly can,” Mutch said. They ran a large N-body simulation – about 300 million light years on each side – with billions of particles, each corresponding to a mass about 400 million times that of the sun.

The telltale “knots” circled in the N-body simulation. Image courtesy of Simon Mutch.

Looking at the simulation, the researchers then identified “knots” in the images – formations called “dark matter halos” where galaxies would start to form. The researchers tracked these halos through the simulation, building hierarchical merger trees that described how the halos coalesced over time. Using a semi-analytic galaxy formation model, they then “painted on” galaxies over the halos. 

“What we also did, which was unique at the time with the DRAGONS program,” Mutch said, “is that we use the information of these galaxies to calculate how many ionizing photons they were producing and then fed that into another code, called a seminumerical model, that then was able to give us what the ionization state of the volume was a function of position. So basically, it allowed us to figure out where these ionized bubbles were.”

With that process in hand, the researchers would then evolve the galaxies again, run the seminumerical model again to get the ionization results and repeat the process until the ionization was complete.

The computational implications

“What this allows us to do is to run one really expensive N-body simulation, on the order of tens or hundreds of millions of CPU hours, and just do that once,” Mutch explained. “And then we can keep running our semi-analytic model over the top of that.” The semi-analytic model, he said, took only on the order of ten CPU hours. “And that’s where things start to get really powerful.”

“What that means is we’re no longer restricted to running one really big cosmological hydrodynamic simulation once every few years and needing a large grant and a whole supercomputer to do it,” Mutch said. “Instead, we can start to explore what happens when we change different parameters in our galaxy model, and we can then see how that changes the signal from reionization.”

This capacity for rapid iteration leaves the researchers well-positioned to be able to interpret ionization results as near-future high-power telescopes like the Square Kilometre Array (which is under construction in South Africa and Australia) begin to provide large amounts of data on the radio signals produced by reionization. “So that way, when we measure the ionized bubbles,” Mutch said, “we can infer something about the galaxies.”

Mutch is also taking part in the Genesis simulations under the government-funded ASTRO 3D program. The 30 researchers under Genesis are preparing to run a “big box” simulation – half a billion light years on each side – with 80003 particles inside of it. They expect the model to be “competitive on an international scale,” Mutch said.

To conduct the reionization simulations and the Genesis simulations, Mutch and his colleagues turned to homegrown supercomputing power. Initially, they were using NCI Australia’s Raijin supercomputer, an Intel-based system delivering 1.7 Linpack petaflops that barely squeaked into the most recent Top500 list. Raijin, however, is now being decommissioned, and the researchers are helping to stress test its replacement: Gadi. 

The Gadi supercomputer. Image courtesy of NCI.

While not yet complete, Gadi will boast 3,000 Cascade Lake nodes with two 24-core CPUs and 192 GB of memory, 160 nodes with four Nvidia V100 GPUs and 50 large memory nodes with 1.5 TB of memory. Already, Gadi’s first phase – installed in 2019 – is delivering 4.4 Linpack petaflops, placing it 47th in its first appearance on the Top500 list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Ba Read more…

By Oliver Peckham

AWS Solution Channel

Introducing AWS ParallelCluster as an Intel Select Solution

High performance computing (HPC) system owners can spend weeks or months researching, procuring, and assembling components to build HPC clusters to run their workloads. Understanding and managing the complexities of compute, storage, networking, and software requirements can be confusing and time-consuming, slowing innovation and results. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This