In Australia, HPC Illuminates the Early Universe

By Oliver Peckham

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simulations of large swaths of the universe taking years to complete on powerful supercomputers. In a talk for the ICM Seminars series (hosted by the Interdisciplinary Centre for Mathematical and Computational Modelling University of Warsaw), Dr. Simon Mutch highlighted how Australian research organizations are working around the computational requirements to deliver insights into the origins of the universe as we know it.

Dr. Simon Mutch

The reionization of the universe – and why we should care about it

“Immediately after the Big Bang, the universe was filled mostly just with neutral hydrogen – there wasn’t really much else there,” said Mutch, who is a postdoctoral fellow at the University of Melbourne’s ASTRO 3D Centre of Excellence and a senior research data specialist for the Melbourne Data Analytics Platform. “But then there were gravitational perturbations that caused gas to collapse in on itself, and eventually stars and galaxies began to form, and those stars gave out light, which was of high enough energy to start to ionize the surrounding neutral gas, so it stripped electrons off that neutral gas and changed its properties.”

This ionization, he explained, spread into bubbles, and as galaxies grew in number and size, the bubbles began to overlap, eventually resulting in the total reionization of the universe – some 12.5 billion years ago. The relationship between these ionized bubbles and the galaxies that birthed them a major focus for Mutch and his colleagues. 

Over the course of billions of years, ionization bubbles grew to fill the entire universe. Image courtesy of Simon Mutch.

 “That’s really interesting, because it means that if we can observe this reionization signal … then we can infer something about the galaxies which are driving this reionization process.” Mutch said. “What’s even more interesting is that the reionization signal is sensitive to all galaxies.” In terms of the galaxies populating the universe, he explained, relatively faint galaxies are the most common – but also the most difficult to see. “By studying this reionization structure,” he said, “we can actually learn something about the very smallest, very faintest galaxies that we can’t actually see.” 

Mutch compared the process to dropping stones in a pond and studying the ripples to understand the shapes and sizes of each stone. “The main problem is: how do we connect the properties of galaxies to the signature of the bubbles that we see during reionization?” he said. “For that, we use cosmological simulations.”

The trouble with simulations

Cosmological simulations of galaxy formation build a chunk of the universe from the ground up, accounting for elements like gravity, dark matter, heating, cooling, turbulence, chemistry, supernovae, black holes, magnetic fields and more, which are all woven into hydrodynamical or mesh models.

“While these are incredibly powerful, they are extremely computationally intensive,” Mutch said. “That’s because there is a large dynamic range, both in terms of temporal and spatial resolution.” By way of examples, he discussed IllustrisTNG, a galaxy formation simulation one billion light years across that required 35 million CPU hours on the Hazel Hen supercomputer at the High Performance Computing Center (HLRS) in Stuttgart. Similarly, he said, the larger BlueTides simulation took 20 million CPU hours on the Blue Waters system at NCSA, nearly taking up the entire machine.

The necessary scale of simulating reionization compounded the high computational needs. “What we’re always doing is making this tradeoff between the amount of resolution we get in the simulation and the size of the simulation,” Mutch said. “This problem is particularly acute, though, if you’re talking about the early universe and reionization.” The reionization bubbles were tens of millions of light years across, so in order to produce a statistically relevant sample of them, you would need many bubbles – and a massive simulation.

Normally, researchers adjust parameters so they can match to the known universe nearby. But not much is known about the early universe – so instead, Mutch and his colleagues needed to run “many, many different realizations of the simulations” to test different models, feedback processes and other variables to see how they affected the ionized bubbles.

Finding a path through the cosmos

Tackling this uphill battle was the goal for the University of Melbourne’s Dark-ages, Reionization And Galaxy-formation Observables Numerical Simulation, or “DRAGONS,” program. (“We love our acronyms in astronomy,” Mutch said. “Everything needs to have a good acronym.”)

Thankfully, he said, the universe gave them a helping hand. Overall, the universe consists of around 70% dark energy, 25% dark matter and only 5% normal matter – what we interact with in our daily lives. “What this actually means is that we can do a pretty good job of simulating the position and the large-scale distribution of the matter by simply ignoring normal matter, and that makes things much easier,” Mutch said, explaining that they could ignore gas, shocks, star formation and more. “All we care about is getting the large-scale distribution of matter correct.”

The matter composition of the universe. Image courtesy of Simon Mutch.

So the researchers developed a N-body (particle) simulation that treated all the matter in the universe as collisionless. “We can pour all our computing power into doing this problem of gravity, essentially, and doing as big a simulation to as high a resolution as we possibly can,” Mutch said. They ran a large N-body simulation – about 300 million light years on each side – with billions of particles, each corresponding to a mass about 400 million times that of the sun.

The telltale “knots” circled in the N-body simulation. Image courtesy of Simon Mutch.

Looking at the simulation, the researchers then identified “knots” in the images – formations called “dark matter halos” where galaxies would start to form. The researchers tracked these halos through the simulation, building hierarchical merger trees that described how the halos coalesced over time. Using a semi-analytic galaxy formation model, they then “painted on” galaxies over the halos. 

“What we also did, which was unique at the time with the DRAGONS program,” Mutch said, “is that we use the information of these galaxies to calculate how many ionizing photons they were producing and then fed that into another code, called a seminumerical model, that then was able to give us what the ionization state of the volume was a function of position. So basically, it allowed us to figure out where these ionized bubbles were.”

With that process in hand, the researchers would then evolve the galaxies again, run the seminumerical model again to get the ionization results and repeat the process until the ionization was complete.

The computational implications

“What this allows us to do is to run one really expensive N-body simulation, on the order of tens or hundreds of millions of CPU hours, and just do that once,” Mutch explained. “And then we can keep running our semi-analytic model over the top of that.” The semi-analytic model, he said, took only on the order of ten CPU hours. “And that’s where things start to get really powerful.”

“What that means is we’re no longer restricted to running one really big cosmological hydrodynamic simulation once every few years and needing a large grant and a whole supercomputer to do it,” Mutch said. “Instead, we can start to explore what happens when we change different parameters in our galaxy model, and we can then see how that changes the signal from reionization.”

This capacity for rapid iteration leaves the researchers well-positioned to be able to interpret ionization results as near-future high-power telescopes like the Square Kilometre Array (which is under construction in South Africa and Australia) begin to provide large amounts of data on the radio signals produced by reionization. “So that way, when we measure the ionized bubbles,” Mutch said, “we can infer something about the galaxies.”

Mutch is also taking part in the Genesis simulations under the government-funded ASTRO 3D program. The 30 researchers under Genesis are preparing to run a “big box” simulation – half a billion light years on each side – with 80003 particles inside of it. They expect the model to be “competitive on an international scale,” Mutch said.

To conduct the reionization simulations and the Genesis simulations, Mutch and his colleagues turned to homegrown supercomputing power. Initially, they were using NCI Australia’s Raijin supercomputer, an Intel-based system delivering 1.7 Linpack petaflops that barely squeaked into the most recent Top500 list. Raijin, however, is now being decommissioned, and the researchers are helping to stress test its replacement: Gadi. 

The Gadi supercomputer. Image courtesy of NCI.

While not yet complete, Gadi will boast 3,000 Cascade Lake nodes with two 24-core CPUs and 192 GB of memory, 160 nodes with four Nvidia V100 GPUs and 50 large memory nodes with 1.5 TB of memory. Already, Gadi’s first phase – installed in 2019 – is delivering 4.4 Linpack petaflops, placing it 47th in its first appearance on the Top500 list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire