In Australia, HPC Illuminates the Early Universe

By Oliver Peckham

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simulations of large swaths of the universe taking years to complete on powerful supercomputers. In a talk for the ICM Seminars series (hosted by the Interdisciplinary Centre for Mathematical and Computational Modelling University of Warsaw), Dr. Simon Mutch highlighted how Australian research organizations are working around the computational requirements to deliver insights into the origins of the universe as we know it.

Dr. Simon Mutch

The reionization of the universe – and why we should care about it

“Immediately after the Big Bang, the universe was filled mostly just with neutral hydrogen – there wasn’t really much else there,” said Mutch, who is a postdoctoral fellow at the University of Melbourne’s ASTRO 3D Centre of Excellence and a senior research data specialist for the Melbourne Data Analytics Platform. “But then there were gravitational perturbations that caused gas to collapse in on itself, and eventually stars and galaxies began to form, and those stars gave out light, which was of high enough energy to start to ionize the surrounding neutral gas, so it stripped electrons off that neutral gas and changed its properties.”

This ionization, he explained, spread into bubbles, and as galaxies grew in number and size, the bubbles began to overlap, eventually resulting in the total reionization of the universe – some 12.5 billion years ago. The relationship between these ionized bubbles and the galaxies that birthed them a major focus for Mutch and his colleagues. 

Over the course of billions of years, ionization bubbles grew to fill the entire universe. Image courtesy of Simon Mutch.

 “That’s really interesting, because it means that if we can observe this reionization signal … then we can infer something about the galaxies which are driving this reionization process.” Mutch said. “What’s even more interesting is that the reionization signal is sensitive to all galaxies.” In terms of the galaxies populating the universe, he explained, relatively faint galaxies are the most common – but also the most difficult to see. “By studying this reionization structure,” he said, “we can actually learn something about the very smallest, very faintest galaxies that we can’t actually see.” 

Mutch compared the process to dropping stones in a pond and studying the ripples to understand the shapes and sizes of each stone. “The main problem is: how do we connect the properties of galaxies to the signature of the bubbles that we see during reionization?” he said. “For that, we use cosmological simulations.”

The trouble with simulations

Cosmological simulations of galaxy formation build a chunk of the universe from the ground up, accounting for elements like gravity, dark matter, heating, cooling, turbulence, chemistry, supernovae, black holes, magnetic fields and more, which are all woven into hydrodynamical or mesh models.

“While these are incredibly powerful, they are extremely computationally intensive,” Mutch said. “That’s because there is a large dynamic range, both in terms of temporal and spatial resolution.” By way of examples, he discussed IllustrisTNG, a galaxy formation simulation one billion light years across that required 35 million CPU hours on the Hazel Hen supercomputer at the High Performance Computing Center (HLRS) in Stuttgart. Similarly, he said, the larger BlueTides simulation took 20 million CPU hours on the Blue Waters system at NCSA, nearly taking up the entire machine.

The necessary scale of simulating reionization compounded the high computational needs. “What we’re always doing is making this tradeoff between the amount of resolution we get in the simulation and the size of the simulation,” Mutch said. “This problem is particularly acute, though, if you’re talking about the early universe and reionization.” The reionization bubbles were tens of millions of light years across, so in order to produce a statistically relevant sample of them, you would need many bubbles – and a massive simulation.

Normally, researchers adjust parameters so they can match to the known universe nearby. But not much is known about the early universe – so instead, Mutch and his colleagues needed to run “many, many different realizations of the simulations” to test different models, feedback processes and other variables to see how they affected the ionized bubbles.

Finding a path through the cosmos

Tackling this uphill battle was the goal for the University of Melbourne’s Dark-ages, Reionization And Galaxy-formation Observables Numerical Simulation, or “DRAGONS,” program. (“We love our acronyms in astronomy,” Mutch said. “Everything needs to have a good acronym.”)

Thankfully, he said, the universe gave them a helping hand. Overall, the universe consists of around 70% dark energy, 25% dark matter and only 5% normal matter – what we interact with in our daily lives. “What this actually means is that we can do a pretty good job of simulating the position and the large-scale distribution of the matter by simply ignoring normal matter, and that makes things much easier,” Mutch said, explaining that they could ignore gas, shocks, star formation and more. “All we care about is getting the large-scale distribution of matter correct.”

The matter composition of the universe. Image courtesy of Simon Mutch.

So the researchers developed a N-body (particle) simulation that treated all the matter in the universe as collisionless. “We can pour all our computing power into doing this problem of gravity, essentially, and doing as big a simulation to as high a resolution as we possibly can,” Mutch said. They ran a large N-body simulation – about 300 million light years on each side – with billions of particles, each corresponding to a mass about 400 million times that of the sun.

The telltale “knots” circled in the N-body simulation. Image courtesy of Simon Mutch.

Looking at the simulation, the researchers then identified “knots” in the images – formations called “dark matter halos” where galaxies would start to form. The researchers tracked these halos through the simulation, building hierarchical merger trees that described how the halos coalesced over time. Using a semi-analytic galaxy formation model, they then “painted on” galaxies over the halos. 

“What we also did, which was unique at the time with the DRAGONS program,” Mutch said, “is that we use the information of these galaxies to calculate how many ionizing photons they were producing and then fed that into another code, called a seminumerical model, that then was able to give us what the ionization state of the volume was a function of position. So basically, it allowed us to figure out where these ionized bubbles were.”

With that process in hand, the researchers would then evolve the galaxies again, run the seminumerical model again to get the ionization results and repeat the process until the ionization was complete.

The computational implications

“What this allows us to do is to run one really expensive N-body simulation, on the order of tens or hundreds of millions of CPU hours, and just do that once,” Mutch explained. “And then we can keep running our semi-analytic model over the top of that.” The semi-analytic model, he said, took only on the order of ten CPU hours. “And that’s where things start to get really powerful.”

“What that means is we’re no longer restricted to running one really big cosmological hydrodynamic simulation once every few years and needing a large grant and a whole supercomputer to do it,” Mutch said. “Instead, we can start to explore what happens when we change different parameters in our galaxy model, and we can then see how that changes the signal from reionization.”

This capacity for rapid iteration leaves the researchers well-positioned to be able to interpret ionization results as near-future high-power telescopes like the Square Kilometre Array (which is under construction in South Africa and Australia) begin to provide large amounts of data on the radio signals produced by reionization. “So that way, when we measure the ionized bubbles,” Mutch said, “we can infer something about the galaxies.”

Mutch is also taking part in the Genesis simulations under the government-funded ASTRO 3D program. The 30 researchers under Genesis are preparing to run a “big box” simulation – half a billion light years on each side – with 80003 particles inside of it. They expect the model to be “competitive on an international scale,” Mutch said.

To conduct the reionization simulations and the Genesis simulations, Mutch and his colleagues turned to homegrown supercomputing power. Initially, they were using NCI Australia’s Raijin supercomputer, an Intel-based system delivering 1.7 Linpack petaflops that barely squeaked into the most recent Top500 list. Raijin, however, is now being decommissioned, and the researchers are helping to stress test its replacement: Gadi. 

The Gadi supercomputer. Image courtesy of NCI.

While not yet complete, Gadi will boast 3,000 Cascade Lake nodes with two 24-core CPUs and 192 GB of memory, 160 nodes with four Nvidia V100 GPUs and 50 large memory nodes with 1.5 TB of memory. Already, Gadi’s first phase – installed in 2019 – is delivering 4.4 Linpack petaflops, placing it 47th in its first appearance on the Top500 list.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire