Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

By Tiffany Trader

June 9, 2020

Pittsburgh Supercomputing Center (PSC – a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award from the National Science Foundation to build an AI supercomputer designed to accelerate AI research in pursuit of science, discovery and societal good. The new machine, called Neocortex, couples two Cerebras CS-1 AI servers with a shared-memory HPE Superdome Flex server. PSC will make Neocortex available to researchers across the Extreme Science and Engineering Discovery Environment (XSEDE) later this year.

Each Cerebras CS-1 is powered by one Cerebras Wafer Scale Engine (WSE) processor, which contains 400,000 AI-optimized cores implemented on a 46,225 square millimeter wafer with 1.2 trillion transistors. A front-end HPE Superdome Flex server will handle pre- and post-processing of data flowing in and out of the WSE processors. The HPE Superdome Flex is provisioned with 32 Intel Xeon CPUs, 24 terabytes of memory, 205 terabytes of flash storage, and 24 network interface cards.

The Superdome Flex connects to each CS-1 server via 12 100 gigabit Ethernet links, providing 1.2 terabits per second of bandwidth between the machines. That’s enough bandwidth to transfer 37 HD movies every second, said Nick Nystrom, chief scientist, Pittsburgh Supercomputing Center. The Neocortex team is considering implementing the network on a single switch to explore allowing the two CS-1s to interface directly at 1.2 terabits per second.

The WSE processor inside the CS-1 provides 9 petabytes per second of on-die memory bandwidth, equivalent to about a million HD movies per second, by Nystrom’s math.

Neocortex (named after the region of the brain responsible for higher-order brain functions, including language processing) is the first CS-1 installation funded by the NSF and the first publicly announced CS-1 cluster. Cerebras debuted its Wafer Scale Engine last August at Hot Chips and the CS-1 system unveiling followed at SC19 in November. The Department of Energy was the flagship customer; single-node CS-1 systems are deployed at Argonne National Lab and Lawrence Livermore National Lab.

Cerebras CS-1 system

Describing the impetus for the technology partnering, Nystrom said that PSC saw the opportunity to bring together the best of two worlds – “the extreme deep learning capability of the server CS-1, and the extreme shared memory of the Superdome Flex with HPE.”

“With shared memory, you don’t have to break your problem across many nodes. You don’t have to write MPI, and you don’t have to distribute your data structures. It’s just all there at high speed,” he added.

Both Cerebras and PSC expressed their expectation that the system will be able to take on a new class of problems, beyond what is available with traditional GPUs.

“We’re just scratching the surface of sort of a new class of AI models; we know of additional models that have been difficult to get running on graphics processing units and we are extremely eager to be partnering with pioneering researchers to show the world what these models might be able to do,” said Andrew Feldman, Cerebras cofounder and CEO. His list of target examples includes models with separable convolutions or models with native and induced sparsity, both coarse and fine grained, graph neural networks with irregular sparse connections, complex sequential models, and very large models where parallelism is desirable.

Even with current best-in-class PSC machines, like the GPU-based Bridges and Bridges-AI, research is constrained, said Paola Buitrago, principal investigator and PSC director of artificial intelligence and big data, noting “there is clearly a need for more compute, and fast interconnect and storage.”

“Artificial intelligence in 2012 started this kind of renaissance, thanks to neural networks being implemented on GPUs,” Buitrago shared in an interview with HPCwire. “GPUs absolutely do well with matrix operations, which is one of the main operations in our neural networks, but they weren’t designed for AI. Now with the Cerebras technology, we see a machine that is specifically designed for AI and for the potential optimizations in deep learning. We are excited to explore how it can speed up and transform what is currently happening in deep learning, allowing us to explore more and more ambitious science and reducing the time to curiosity.”

Buitrago expects Neocortex to be more powerful than the PSC Bridges-AI system by a few orders of magnitude. Providing further characterization of the system’s potential, Cerebras’ Feldman said the tuned system cluster with Cerebras’ wafer-scale cores and “the pre-processing machine from HPE” will have the power of 800-1,500 traditional GPUs, or “or about 20 racks worth of graphics processing with a single rack of Cerebras.”

Naturally, PSC will be putting Neocortex through its paces to see if this claim bears out. The Neocortex group at PSC has identified a number of benchmarks as being important to the community. “These were selected to demonstrate the capability of the system when it hits the ground, and the system will, of course, continue to mature over time,” said Nystrom, adding they will be evaluating the system with all the big complex networks that are very challenging right now, including LSTM.

“In addition to LSTM, we expect Neocortex will be very good at graph convolutional networks, important in all kinds of science,” said Nystrom. “And then over time across CNNs. So we’ll be using those initially, and we’ll be engaging early users to demonstrate scientific impact. That’s very important to the National Science Foundation.”

Buitrago said that their users who are bounded by current hardware are “in large part working on natural language processing and working with transformer type networks, including BERT and Megatron-LM, where the models are quite big with hundreds of millions and billions of parameters,” adding, “that’s a specific use case that we will be enabling with the Neocortex system.”

HPE Superdome Flex

The number of applications that need AI is growing, encompassing virtually all fields of science, many drawing on computer vision, text processing, and natural language processing. “We want to explore use cases that come specifically from science streaming needs,” said Buitrago. “So we are working with cosmology researchers, people doing image analysis for healthcare where they need to [handle] the high resolution images and also images in more than two dimensions and seeing how to address what are the best solutions for those specific use cases.”

The project partners are particularly enthused about harnessing AI for social good. Drug discovery, more accurate weather prediction, improved materials for increased solar energy generation and understanding large plant genomes to boost crop yields are just a few of the areas PSC expects will benefit from Neocortex as well as the upcoming Bridges-2 system (see slide below right for system details).

Details about Bridges-2 were presented (virtually) by Nick Nystrom at the HPC-AI Advisory Council Stanford Conference in April

Both Neocortex and Bridges-2 — also built with HPE — will be deployed in the fall. “We’re launching two supercomputers in the same season,” Nystrom declared. “PSC has never done that before.”

As with Bridges-2, 90 percent of time on Neocortex will be allocated through XSEDE. “We’ll have a long early user period, but there’s also discretionary capacity for industry to work with us too, to use the world’s most advanced AI capability to develop their capacity for industrial competitiveness and for translational research,” said Nystrom.

There’s also a concerted focus, via the NSF-funded OpenCompass program, to collect and document best practices for running artificial intelligence at scale and communicate those to the open science community. This dovetails with a mission of PSC to support non-traditional users (from history, philosophy, etc.) and users who are just getting started with AI.

Neocortex will support the most popular deep learning frameworks and will be federated with PSC’s new Bridges-2 supercomputer, creating “a singularly powerful and flexible ecosystem for high performance AI, data analytics, modeling and simulation.”

Both Neocortex and Bridges-2 will be available at no cost for research and education, and at cost-recovery rates for industry users.

PSC will present a tutorial on AI hardware at PEARC (July 26-30) and will be talking more about the Neocortex system and what to expect. More details will be forthcoming at https://pearc.acm.org/pearc20/.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

What’s New in HPC Research: the LHC, Nuclear Reactors, Legion & More

August 1, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPC Career Notes: August 2020 Edition

August 1, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Heterogeneous Computing Gets a Code Similarity Tool

July 31, 2020

A machine programming framework for heterogeneous computing championed by Intel Corp. and university partners is built around an automated engine that analyzes code for similarities. The approach could eventually allow n Read more…

By George Leopold

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

In Big Win for COVID-19 Research, Neocortix Brings Arm Support to [email protected], [email protected]

July 28, 2020

Normally, Neocortix offers distributed cloud computing for its clients by way of PhonePaycheck, an app that pays users in exchange for the idle processing time Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This