At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

By Oliver Peckham

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominated the supercomputing sector, with COVID-related research receiving major allocations on nearly every research supercomputer in the world (and many industrial supercomputers). It’s not surprising, then, that at ISC 2020, the virtual conference opened, revealed the new Top500 list – and then got straight to COVID-19.

In the focus session, three speakers addressed how HPC is fighting back against the coronavirus: Satoshi Matsuoka of RIKEN, which just nabbed the top spot in the Top500 with its Fugaku system; Peter Coveney of the Centre of Excellence in Computational Biomedicine, which is working to make HPC and machine learning actionable in a rapid drug development workflow; and Rick Stevens of Argonne National Laboratory, where researchers are working with the COVID-19 HPC Consortium to comb through billions of molecules.

Satoshi Matsuoka highlights Fugaku’s role in COVID-19 research

Satoshi Matsuoka

Fugaku, the most powerful supercomputer in the world, is in business early thanks to COVID-19. The system – situated at Riken in Japan – was scheduled to launch in 2021. When the pandemic struck, plans changed. “It was decided by [Japan’s] Ministry of Education, Culture, Sports, Science and Technology that we will utilize [not only supercomputers that are already available] but also [deploy Fugaku early], almost a year ahead of schedule, to combat COVID-19,” explained Matsuoka, director of the Riken Center for Computational Science (R-CCS).

The Fugaku supercomputer

Fugaku’s showstopping 415 Linpack petaflops are close to triple the performance of the runner-up, Oak Ridge’s newly dethroned Summit system. At 158,976 nodes, Fugaku is the largest system ever created in terms of nodes, footprint and power consumption. The software, Matsuoka said, is “quite standard,” allowing for broad usability without much Fugaku-specific tweaking.

“They’re largely divided into two areas,” Matsuoka said of Fugaku’s COVID-19 workloads. “One is medical-pharma – so trying to see how the virus behaves, what are the effective drugs, especially how we can repurpose existing drugs and so forth and also how a vaccine is made. So these are molecular-level investigations of the virus and its countermeasures. The other is more macroscopic – so we’re trying to see how these viruses are transmitted and what are the mitigation measures and how it will impact society.”

Matsuoka highlighted several of the COVID-19 projects taking advantage of Fugaku’s early arrival. One Riken researcher, for instance, is studying conformational changes of the spike protein using a highly scalable molecular dynamics code. Another researcher is using fragment molecular orbital calculations to investigate the energy levels of the spike protein, scaling across hundreds of thousands of Fugaku’s CPUs. “On [Fugaku’s predecessor] the K computer,” Matsuoka said, “this calculation would have taken days, weeks, multiple weeks – on Fugaku, … they have been able to do this in just three hours.”

Other researchers are using Fugaku to run socially oriented simulations, such as simulating droplets in indoor spaces like trains or simulating the spread effects of using face masks or contact tracing applications, Matsuoka said – and, of course, there are more to come. “So if you have any good ideas,” he said, “go to the website and you can apply.” 

A Riken-led simulation of virus droplets in train cabins. Image courtesy of Satoshi Matsuoka.

Peter Coveney describes a new, HPC- and AI-driven model for drug development

Peter Coveney

Coveney, the second speaker, runs the Centre of Excellence in Computational Biomedicine (CompBioMed), an initiative funded by the European Union that is currently redirecting its research efforts and computational research to the study of and drug development for COVID-19. Coveney (who also teaches at University College London) stressed the need to “invert the model [of drug development] as it currently exists” using advanced IT.

“The opportunities there are enormous,” Coveney said. “What we’re really trying to do is transform the approach to biomedicine, to be able to move it from a highly empirical approach … to putting a priority on the predictions that come out of computers.”

But to do that, he said, the computational results had to be actionably accurate – and perhaps even more difficult, they had to be quickly produced. Molecular screening, however – the crux of computational drug design, whereby compounds are fitted to targets on the virus’ proteins – is labor-intensive, time-consuming and expensive ($1 to $10 a compound, with billions of compounds to screen for COVID-19).

Coveney outlined how CompBioMed worked with over 40 partners around the world to streamline the computational drug design pipeline. CompBioMed gained access to a wide range of supercomputers, from SuperMUC-NG (the most powerful supercomputer in the EU) to Piz Daint, Archer, Summit, Frontera, Theta and more. The researchers used a piece of middleware called Radical Cybertools to run workflows across a large number of nodes on multiple machines.

With computing power in hand, CompBioMed focused on how to ensure “validation, verification and uncertainty quantification” (or “VVUQ”) in the pipeline. “This is designed in general to raise confidence in HPC simulation,” Coveney said.

To effectively leverage the computing power and ensure “VVUQ,” CompBioMed combined machine learning with molecular dynamics. Machine learning was used first to whittle down the near-infinite list of candidate molecules. “We have to do searches in a hurry,” Coveney said. “We want to use computationally very fast methods that are also cheap … to search huge libraries of molecules, to explore chemical space, to predict new molecules and so on.” 

The ensemble molecular dynamics process. Image courtesy of Peter Coveney.

Then, with the list whittled down, CompBioMed used molecular dynamics simulations – 20 to 30 of them at a time. As Coveney explained, a single molecular dynamics simulation could have a large number of errors. “But if you run many of them concurrently … we can run those on very large supercomputers all at the same time,” Coveney said. “Then we can make reliable predictions that get fed back to another stage of the machine learning.”

The best candidate compounds from this process are then submitted to medical research labs for further testing. “We are already discovering many tens to hundreds of potential compounds that can be investigated by our experimental colleagues,” Coveney said. “And indeed, that’s happening already.”

“We’re trying to change the way medicine is actually understood and applied,” Coveney concluded. “We want to make the subject more amenable to scientific investigation, that it should revolve around theory, modeling and simulation in addition to experimental research.”

Rick Stevens dives into the COVID-19 HPC Consortium and machine learning-enabled research

Rick Stevens

Finally, Stevens took the virtual stage. Stevens – associate laboratory director at Argonne National Laboratory – has been working closely with the COVID-19 HPC Consortium, a public-private effort to pool supercomputing resources for COVID-19 research. Currently, the effort has over 40 members, comprising some 483 petaflops of resources, 50,000 GPUs, 136,000 nodes and five million CPU cores. 

As Stevens explained, the projects being tackled by the consortium fall into three broad categories: first, basic science, including things like analyzing the virus’ structure, protein functions and virus evolution; second, therapeutics (“the largest group”), aiming to discovery drug targets on the virus, design drugs and discover repurposable drugs; and finally, patient care – “things more related to optimizing the healthcare system or epidemiology.”

Stevens outlined some of the key work, especially where it intersected with Argonne. “If you’re gonna work on this problem, you need to understand the enemy,” Stevens said, describing how Argonne has used its Advanced Photon Source (APS) to identify new structures of COVID-19, which in turn produce new drug targets for simulations to examine. 

Like Coveney, Stevens highlighted the intersections of AI and supercomputing as viable pathways for processing massive amounts of compounds in a relatively short time frame. For instance, he said, researchers were using AI to reconcile models of proteins from various sources to produce even more accurate models. In the spring, Argonne also began assembling a large database – around 60 TB – containing descriptors, images and more for over four billion compounds, with the aim of producing massive datasets for machine learning applications.

“One of the strategies that we have is to use a combination of high-throughput virtual docking … to generate scores – generate them on thousands or millions of data points,” Stevens said, “but then use that data to train machine learning models and do inference on a much larger scale.” As in Coveney’s research, the most promising hits are then sent for wet lab screening. 

Argonne’s pipeline for COVID-19 drug discovery. Image courtesy of Rick Stevens.

Stevens also discussed the use of machine learning to understand the “trajectories” of molecular dynamics simulations and the use of reinforcement learning to essentially build drug molecules from the ground up, adding to them iteratively to improve the docking score.

“One of the overall challenges here, of course, is that there’s over 10⁶⁰ possible drugs,” Steven said, “and you can only test at the end of the day, in humans, a small fraction of these.” But now, with AI and supercomputing converging to create a new model of rapid drug design, that might be enough.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This