Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

By John Russell

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning Day, does a nice job scanning a few recent industry highlights and whetting one’s appetite for next year by summarizing the ML sessions that had been planned.

Presented here are a few of his lightly-edited comments and slides. (Link to video)

MICROSOFT BUILDS MAMMOUTH AI SYSTEM

Torsten Hoefler, ETH Zurich

“Let me start a little bit about the interesting industry developments. Here we have the long-term player, Google Cloud. The news is that you can actually rent a TPU pod with about 100 petaflops brain float performance (Brain Floating Point Format, Bfloat16), which is just quite amazing. Even though it is a reduced precision format, so only eight exponent bits and seven mantissa bits – so maybe not suitable for scientific computing but perfectly suitable for machine learning. [Other] news and this was nearly a year ago is you can also buy a mini TPU in Raspberry Pi format, which unfortunately only support six bit floating point but it supports four teraflops per second at only two watts. Quite amazing,” said Hoefler.

“Up next is another very big company. Microsoft pledged $1 billion for OpenAI to support the holy grail of artificial intelligence, general intelligence. Basically developing models that go way beyond what we are used to today where we have to fine tune them to tasks. I will talk about this in a couple of minutes. Microsoft recently announced that they built an AI supercomputer, which is quite a respectable machine. They assess that it would be in the top five of the Top500 list. It has about 285,000 CPU cores, 10,000 GPUs and 400 gigabit per second network connectivity. You can read more in the Microsoft block (slide). Kevin Scott, the CTO of Microsoft, has given a wonderful talk about that machine as well.”

Talking about Nvidia’s latest A100 GPU, Hoefler said, “This is a true engineering marvel. So getting to the maximum size of the reticle that you can build today, so 820 something square millimeters out of the maximum 850. [It has] 54 billion transistors and very impressive datasheet as we can see here. So number of [FP64 and FP32 CUDA cores] is going up. The number of tensor cores is slightly going down as is the frequency however the overall performance is just incredibly impressive.

“[Here’s another] interesting news item. If you thought as a scientific computing person, you could get away without using tensor cores, unfortunately if you want to achieve peak performance on that architecture, with FP64, even, you have to use tensor cores. It also has quite impressive memory bandwidth. I don’t want to go through all of this. One interesting feature with these tensor cores is now that there’s a new format, a TF32, even though I would have called it for fairness, TF19, because actually, it only has 19 significant bits that are used for the computation, but it’s backwards compatible to 32-bit calculations, which makes it quite interesting for legacy codes. I’m not so sure if this is very useful for newly tuned codes, because at the end, what’s going to happen with this format is you’re going to use the full memory bandwidth of an FP32 or 32 bits for every single calculation and you’re only performing that calculation in 16-bit accuracy, of course, with a 32-bit accumulator. So that’s a wonderful backwards compatibility feature,” the said.

TRAINING A MODEL WITH 175 BILLION PARAMETERS

“We had very interesting [work] in the recent weeks where a new application is showing quite massive [improvement]. I mean OpenAI’s GPT-3 models. So OpenAI has this history of these GPT (generative pretrained transformer) models, where they train very large transformers in a generative setting. GPT3 is the largest one of those and probably the largest machine learning model ever trained. It has 175 billion parameters. So if you store this with two bytes per parameter, so just 16 bits for each parameter, that’s going to be [a] 350-gigabyte model size. That’s just a model size. Imagine you want to run inference on this; even inference is quite expensive, but training is even more expensive,” said Hoefler adding it would cost “$12 million to train that model in just in GPU credits.’

“There’s a wonderful paper out of OpenAI (June 2020) that explains what you can do with this model. And it’s quite astonishing. So this model is actually a so-called few-shot learner. The idea is you have a large trained model that is trained on a very large corpus that was basically grabbed off the internet. But you don’t fine tune it to the specific tasks. You tune it to specify the task during inference time. So there’s the so-called few-shot setting and the zero-shot setting. So the zero-shot setting is easiest to explain, it basically behaves like a human. I ask the model, please translate cat from English to French, and it will [respond with] that prospective French word. That is a very interesting feature of this network, but it can actually do it, and it achieves state-of-the-art and better results [using] these zero-shot training settings.

“A few-shots basically means that I present a couple of examples to the model. So I provide a series of translations, so cat, and then [a few more] French terms, usually on the order of 10 to 50. This model outperforms pretty much all the state of the art. So you can read the paper, if you want to learn about all the wonderful results that OpenAI has achieved with this. They have not done fine tuning, by the way, probably it is too expensive. I would be very, very curious to see what would happen if you fine-tuned that massive model. But it’s so expensive that they couldn’t even retrain it after they found a bug in their data cleaning procedure. So they had to work around the bug and there are some, some interesting notes in the paper.

“From an HPC perspective, this table (slide below) from that paper is one of the most important tables. You can see here the number of parameters is quite massive and has been growing over time and you can also see the total flops required to train so we are essentially at 314 zetaflops. I’ve made a little analysis to see what this means, so 314 zettaflop, of course mixed-precision FP16 and FP32 most likely. [This would require] 155 years on a V100 if we assume very high performance, like the record performance that has been published. Or that is 400 megawatt hours of that same GPU or for that single training run nearly $4 million, assuming zero communication overhead and perfect use of these GPUs,” said Hoefler.

THE 2020 ML DAY LINEUP…MAYBE NEXT YEAR

“Let me now get a little bit more into the ML day program we had planned for this year and now have planned for next year. The first planned session was on machine learning for climate and weather to be hosted by Peter Dueben, who fortunately sent me some slides that summarize what is going on there.

“The idea here is that we have the earth of course that we are simulating, [and it] is really large and the solution is very, very limited, because we cannot represent every single air particle essentially in a computer. We have to have a very limited resolution at the kilometer scale., but unfortunately, the system itself that we are simulating has very chaotic dynamics; it has all kinds of so called sub-grid effects that are very, very hard to capture in scientific simulations. These processes are simply not resolved and that is one of the bigger problems, especially in earth system component models that are connected in non-trivial ways.”

“However, what we have is very large number of observations. So satellite data, we have plane data – well, we had plane data when the planes were still flying. We have a lot of data that we could train machine learning models on. The idea now is, why don’t we use these machine learning models for multiple different opportunities. Here’s some of the opportunities that we could we could talk about,” said Hoefler.

“We could refine the observations [and] this is something that the community is already doing. We could refine the data assimilation process. We could help with numerical weather forecasting itself, so we could accelerate it using machine learning accelerators, for example the TPU or these low precision tensor cores, and then implement post processing and help with post processing and make simulations even less require it or improve the data that comes out of the simulation. So this is actually something that we have done in my lab.”

“Then the second session was to be organized by Rio Yokota from Tokyo Tech. And he invited a set of wonderful speakers. So first Boris Ginsburg from Nvidia talking about the latest, greatest developments in stochastic device and the gradient descent methods and how to accelerate this with Nvidia GPUs. [This has been done] with one of his PhD students looking at second order optimization or higher order optimization in general, which can not only lead to more accurate models, but also it can also lead in certain circumstances to higher performance. This is a very, very interesting research direction that we are also embarking in. Then Yang You who just graduated from Berkeley and is now taking an assistant professor position on how to work with very, very, large scale systems. So using the LAMB optimizer that we all know and love.”

“The third session was organized by Maryam Dehnavi and Tal Ben-Nun and they invited Amir Gholami (UC Berkeley) to talk about their integrated approach to deep neural network design. They have a nice set of methods that you can combine into a tool chain to do end-to-end training. And then Ce Zhang from ETH Zurich who was going to talk about various ways to implement distributed training ranging from centralized synchronous to synchronous, asynchronous, and then to various decentralized, synchronous and asynchronous training methods. We hope that we can have all these speakers appear in the forthcoming years, and we can we can listen to what they have to say.”

Link to video, https://2020.isc-program.com/presentation/?id=inv_sp139&sess=sess348

Hoefler Bio

Torsten Hoefler is an Associate Professor of Computer Science at ETH Zürich, Switzerland. Before joining ETH, he led the performance modeling and simulation efforts of parallel petascale applications for the NSF-funded Blue Waters project at NCSA/UIUC. He is also a key member of the Message Passing Interface (MPI) Forum where he chairs the “Collective Operations and Topologies” working group. Torsten won best paper awards at the ACM/IEEE Supercomputing Conference SC10, SC13, SC14, EuroMPI’13,

HPDC’15, HPDC’16, IPDPS’15, and other conferences. He published numerous peer-reviewed scientific conference and journal articles and authored chapters of the MPI-2.2 and MPI-3.0 standards. He received the Latsis prize of ETH Zurich as well as an ERC starting grant in 2015. His research interests revolve around the central topic of “Performance-centric System Design” and include scalable networks, parallel programming techniques, and performance modeling. Additional information about Torsten can be found on his homepage at htor.inf.ethz.ch.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire