What’s Needed to Deliver the Nationwide Quantum Internet Blueprint

By John Russell

July 27, 2020

While few details accompanied last week’s official announcement of U.S. plans for a nation-wide quantum internet, many of the priorities and milestones had been worked out during a February workshop and are now available in subsequent reports. The Department of Energy is leading the effort which is part of the U.S. Quantum Initiative passed in 2019.

The race to harness quantum information science – whether through computing, communications, or sensing – has become a global competition. In many ways quantum communications is the furthest along in development and its promise of near absolute security is extremely alluring. DOE’s 17 National Laboratories are intended to serve as the backbone of the U.S. quantum internet effort.

As noted in the official announcement, “Crucial steps toward building such an internet are already underway in the Chicago region, which has become one of the leading global hubs for quantum research. In February of this year, scientists from DOE’s Argonne National Laboratory in Lemont, Illinois, and the University of Chicago entangled photons across a 52-mile “quantum loop” in the Chicago suburbs, successfully establishing one of the longest land-based quantum networks in the nation. That network will soon be connected to DOE’s Fermilab in Batavia, Illinois, establishing a three-node, 80-mile testbed.”

Turning early prototypes into a scaled-up nationwide effort involves tackling many technical challenges. One thorny problem, for example, is development of robust repeater technology, which among other things requires reliable quantum memory technology and prevention of signal loss. Interestingly, satellites may play a role as a bridge according to the report:

“A quantum Internet will not exist in isolation apart from the current classical digital networks. Quantum information largely is encoded in photons and transmitted over optical fiber infrastructure that is used widely by today’s classical networks. Thus, at a fundamental level, both are supported by optical fiber that implements lightwave channels. Unlike digital information encoded and transmitted over current fiber networks, quantum information cannot be amplified with traditional mechanisms as the states will be modified if measured.

“While quantum networks are expected to use the optical fiber infrastructure, it could be that special fibers may enable broader deployment of this technology. At least in the near term, satellite-based entanglement “bridges” could be used to directly connect transcontinental and transatlantic Q-LANs. Preliminary estimates indicate that entangled pairs could be shared at rates exceeding 106 in a single pass of a Medium Earth Orbit (MEO) satellite. Such a capability may be a crucial intermediate step, while efficient robust repeaters are developed (as some estimates predict more than 100 repeaters would be needed to establish a transatlantic link).”

The report from the workshop spells out four priorities along with five milestones. (The event was chaired by Kerstin Kleese van Dam, Brookhaven National Laboratory; Inder Monga, Energy Sciences Network; Nicholas Peters, Oak Ridge National Laboratory; and Thomas Schenkel, Lawrence Berkeley National Laboratory).

Here are the four priorities identified in the report:

  • Provide the Foundational Building Blocks for a Quantum Internet. “Today’s quantum networking experiments rely on a set of devices with limited functionality and performance. However, it can be inferred from classical networks that in order to create wide-area, operational quantum networks, we need more capable devices with additional functionality. These new devices will need to satisfy suitable requirements for reliability, scalability, and maintenance. Potential network devices may include space-to-ground connections; high-speed, low-loss quantum switches; multiplexing technologies and transducers for quantum sources; as well as transduction from optical and telecommunications regimes to quantum computer-relevant domains, including microwaves.”
  • Integrate Multiple Quantum Networking Devices. “Generally, all key quantum network components remain at laboratory-level readiness to date and have yet to be run operationally in a full network configuration. Moving forward will require overcoming critical challenges toward achieving cascaded operation and connectivity, among them unifying operational properties, achieving high-repetition rates (GHz), and devising quantum memory buffers and detectors to compensate for cascading operation losses.”
  • Create Repeating, Switching, and Routing for Quantum Entanglement. Multi-hop networks require a means of strengthening and repeating signals along with selecting paths through the network. While physical and software solutions are used in classical networks, an equivalent has not been found for quantum networks. Challenges include different forms of quantum entanglement swapping, and quantum teleportation protocols over multiple users, as well as coordination and integration of traditional networks with quantum networks technologies for optimal control and operations.
  • Enable Error Correction of Quantum Networking Functions. A fundamental difference for quantum networks arises from the fact that entanglement, whose long-distance generation is an essential network function, is inherently present at the network’s physical layer. This differs from classical networking, where shared states typically are established only at higher layers. In this context, solutions must be found to guarantee network device fidelity levels capable of supporting entanglement distribution and deterministic teleportation, as well as quantum repeater schemes that can compensate for loss and allow for operation error correction.

Some of the test cases being discussed are fascinating such as one across Long Island, NY:

“For example, there would be considerable value in expanding on the current results gleaned from the Brookhaven Lab–SBU–ESnet collaboration, which in April 2019 achieved the longest distance entanglement distribution experiment in the United States by covering approximately 20 km. Integral to the testbed are room-temperature quantum network prototypes, developed by SBU’s Quantum Information Technology (QIT) laboratory, that connect several quantum memories and qubit sources. The combination of these important results allowed the Brookhaven–SBU– ESnet team to design and implement a quantum network prototype that connects several locations at Brookhaven Lab and SBU.

“By using quantum memories to enhance the swapping of the polarization entanglement of flying photon pairs, the implementation aims to distribute entanglement over long distances without detrimental losses. The team has established a quantum network on Long Island, N.Y., using ESnet’s and Crown Castle fiber infrastructure, which encompasses approximately 120-km fiber length connecting Brookhaven Lab, SBU, and Center of Excellence in Wireless and Information Technology (CEWIT) at SBU campus locations.

“As a next step, the team plans to connect this existing quantum network with the Manhattan Landing (MAN- LAN) in New York City, a high-performance exchange point where several major networks converge. This work would set the stage for a nationwide quantum-protected information exchange network. Figure 3:3 depicts the planned network configuration.”

Here are milestones called out in the report:

  • Milestone 1: Verification of Secure Quantum Protocols over Fiber Networks Prepare and Measure Quantum Networks. In this quantum network prototype, end users receive and measure quantum states, but entanglement is not necessarily involved. Users can have their password verified without revealing it, and two end users can share a private key known only to them. Applications to be achieved in this kind of network include quantum key distribution (QKD) between non-trusted nodes with (comparatively) higher tolerance on timing fluctuations, qubit loss, and errors.
  • Milestone 2: Inter-campus and Intra-city Entanglement Distribution Entanglement Distribution Networks. In this type of quantum network, any two end users can obtain entangled states, requiring end-to-end creation of quantum entanglement in a deterministic or heralded fashion, as well as local measurements. These networks provide the most robust quantum encryption possible by enabling implementation of device-independent protocols, such as measurement device- independent QKD and two-party cryptography. The tolerance for fluctuations, loss, and errors is lower than the previous class (Milestone 1). Initial integrations of classic and quantum networks exists.
  • Milestone 3: Intercity Quantum Communication using Entanglement Swapping Quantum Memory Networks. In this type of quantum network, any two end users (nodes) can obtain and store entangled qubits and teleport quantum information to each other. End nodes can perform measurements and operations on the qubits they receive. The minimum memory storage requirements are determined by the time for round trip classical communications. This quantum network stage enables limited cloud quantum computing in the sense that it allows a node with the ability to prepare and measure single qubits to connect to a remote quantum computing server.
  • Milestone 4: Interstate Quantum Entanglement Distribution using Cascaded Quantum Repeaters Network Connectivity. Classic and quantum networking technologies have been integrated. Successful concatenation of quantum repeaters and quantum error corrected communication with respect to loss and operational errors over continental-scale distances, will pave the way for operational entanglement distribution networks covering longer distances, enabling a first-ever quantum Internet to be created.

A fifth broad milestone – the Cross-cutting milestone: Build a Multi-institutional Ecosystem – emphasizes the importance of federal agency cooperation and coordination and names DOE, NSF, NIST, DoD, NSA, and NASA as key players. “While pursuing these alliances, critical opportunities for new directions and spin-off applications should be encouraged by robust cooperation with quantum communication startups and large optical communications companies. Early adopters can deliver valuable design metrics.”

It’s a clearly ambitious agenda. Stay tuned.

Link to announcement, https://www.hpcwire.com/off-the-wire/doe-unveils-blueprint-for-the-quantum-internet-in-event-at-university-of-chicago/

Link to slide deck, https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/202004/Quantum_Internet_Blueprint_Update.pdf?la=en&hash=8C076C1BEB7CA49A3920B1A3C15AA531B48BDD72

Link to full report, https://www.energy.gov/sites/prod/files/2020/07/f76/QuantumWkshpRpt20FINAL_Nav_0.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire