Nvidia Dominates Latest MLPerf Training Benchmark Results

By John Russell

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided early benchmarks for its next generation TPU 4.0 accelerator and Intel previewed performance on third-gen processors (Cooper Lake). Notably, the MLPerf benchmarking organization continues to demonstrate growth; it now has 70 members, a jump from 40 last July when training benchmarks were last released.

Fresh from the launch of its new A100 GPU in May and a top ten finish by Selene (DGX A100 SuperPOD) in June on the most recent Top500 List, Nvidia was able run the MLPerf training benchmarks on its new offerings in time for the July MLPerf release. Impressively, Nvidia set records for scaled out system performance and single node performance (see slides below).

“We were the only company to submit across all benchmarks with available systems,” said Paresh Kharya, senior director of product management, data center computing, Nvidia, in a press pre-briefing.

Kharya attributed much of the performance gain to improved software and work on the stack. “One of the big improvements we did was on the framework called MXnet. We added a capability called CUDA graphs. CUDA graphs was introduced a couple of years ago with CUDA 10. It’s basically a way to define operations that are repeated multiple times. Once so they can be executed and optimized directly on the GPUs. CPUs don’t have to issue instructions repeatedly,” he said.

Parsing through MLPerf’s reported results can be challenging. It’s important to note that MLPerf has two divisions with various categories when interpreting results. Here’s MLPerf’s description:

“The Closed division is intended to compare hardware platforms or software frameworks “apples-to-apples” and requires using the same model and optimizer as the reference implementation. The Open division is intended to foster faster models and optimizers and allows any ML approach that can reach the target quality. MLPerf divides benchmark results into four Categories based on availability.

  • Available In Cloud systems are available for rent in the cloud.
  • Available On Premise systems contain only components that are available for purchase.
  • Preview systems must be submittable as Available In Cloud or Available on Premise in the next submission round.
  • Research systems either contain experimental hardware or software or available components at experimentally large scale.”

MLPerf reported the latest test round, “shows substantial industry progress and growing diversity, including multiple new processors, accelerators, and software frameworks. Compared to the prior submission round, the fastest results on the five unchanged benchmarks improved by an average of 2.7x, showing substantial improvement in hardware, software, and system scale. This latest training round encompasses 138 results on a wide variety of systems from nine submitting organizations.”

The MLPerf Training benchmark suite measures the time it takes to train one of eight machine learning models to a standard quality target in tasks including image classification, recommendation, translation, and playing Go. The latest version of MLPerf includes two new benchmarks and one substantially revised benchmark as follows:

  • BERT: Bi-directional Encoder Representation from Transformers (BERT) trained with Wikipedia is a leading edge language model that is used extensively in natural language processing tasks. Given a text input, language models predict related words and are employed as a building block for translation, search, text understanding, answering questions, and generating text.
  • DLRM: Deep Learning Recommendation Model (DLRM) trained with Criteo AI Lab’s Terabyte Click-Through-Rate (CTR) dataset is representative of a wide variety of commercial applications that touch the lives of nearly every individual on the planet. Common examples include recommendation for online shopping, search results, and social media content ranking.
  • Mini-Go: Reinforcement learning similar to Mini-Go from v0.5 and v0.6, but uses a full-size 19×19 Go board, which is more reflective of research.

“The DLRM-Terabyte recommendation benchmark is representative of industry use cases and captures important characteristics of model architectures and user-item interactions in recommendation data sets,” stated Carole-Jean Wu, MLPerf Recommendation Benchmark Advisory Board Chair from Facebook AI.

Karl Freund, senior analyst, HPC and deep learning, Moor Insights & Strategy, was impressed with Nvidia’s performance gain. “4x [A100 improvement versus Nvidia V100] in 18 months is remarkable. And a big chunk of that comes from software improvements. What surprised me is the lack of serious competition, especially from Google and Intel. As for the startups, if they had a better result they would publish it. So they didn’t which means they don’t,” said Freund.

There were entries from Google, Shenzhen Institutes, Tencent, Alibaba, Dell EMC, Fujitsu, Inspur, Intel, and Nvidia across the various categories.

Freund seemed less impressed with Google’s TPU 4.0 showing – “it is only marginally better on 3 of the eight benchmarks. And it won’t be available for some time yet” – but Google struck a distinctly upbeat tone.

“Google’s fourth-generation TPU ASIC offers more than double the matrix multiplication TFLOPs of TPU v3, a significant boost in memory bandwidth, and advances in interconnect technology. Google’s TPU v4 MLPerf submissions take advantage of these new hardware features with complementary compiler and modeling advances. The results demonstrate an average improvement of 2.7 times over TPU v3 performance at a similar scale in the last MLPerf Training competition. Stay tuned, more information on TPU v4 is coming soon,” according to a Google blog posted today along with the figure below.

Intel’s entries were the only ones in the “Preview” category which requires that the products be available for testing in the the “Available” category by the next round. Single node, 2-node, 4-node, and 8-node Intel systems ran the benchmarks. Shenzhen Institutes had entries in several categories, all using the Huawei Ascend 910 AI-specialized processor launched roughly a year ago. Again, it’s best to review individual system/chip results directly from the MLPerf report.

Link to MLPerf announcement: https://mlperf.org/press

Link to MLPerf results: https://mlperf.org/training-results-0-7/

Link to Google blog: https://blog.tensorflow.org/2020/07/tensorflow-2-mlperf-submissions.html

Link to Nvidia blog: https://blogs.nvidia.com/blog/2020/07/29/mlperf-training-benchmark-records/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing the pinnacle of HPE's HPC portfolio. After announcing its i Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This