PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming online through the end of 2021. John Towns, principal investigator (PI) for XSEDE, introduced panelists who described their upcoming systems at the PEARC20 virtual conference on July 29, 2020.

The systems are part of NSF’s “Advanced Computing Systems & Services: Adapting to the Rapid Evolution of Science and Engineering Research” solicitation. The “Capacity” systems, which will support a range of computation and data analytics in science and engineering, are expected to be available for allocation via XSEDE’s process for projects starting Oct 1, 2021. The “Innovative” platforms, which will deploy specialized hardware tailored for artificial intelligence, will be available for early user access in late 2021 followed by a production period as the platforms mature.

The Practice and Experience in Advanced Research Computing (PEARC) Conference Series is a community-driven effort built on the successes of the past, with the aim to grow and be more inclusive by involving additional local, regional, national, and international cyberinfrastructure and research computing partners spanning academia, government and industry. Sponsored by the ACM, the world’s largest educational and scientific computing society, PEARC20 is now taking place online through July 31.

This year’s theme, “Catch the Wave,” embodies the spirit of the community’s drive to stay on pace and in front of all the new waves in technology, analytics, and a globally connected and diverse workforce. Scientific discovery and innovation require a robust, innovative and resilient cyberinfrastructure to support the critical research required to address world challenges in climate change, population, health, energy and environment.

Anvil: Composable, Interactive, User-Focused

Anvil, the first of the three NSF Category I “Capacity Systems,” was introduced by principal investigator Carol Song, senior research scientist and director of Scientific Solutions with Research Computing at Purdue University. Song stressed the capabilities of the $9.9-million system in providing composability and interactivity to meet the increasing demand for computational resources, enable new computational paradigms, expand HPC to non-traditional research domains, and train the next generation of researchers and HPC workforce.

“It’s not just the CPU nodes or the GPU nodes,” Song said. “It’s the entire ecosystem that focuses on getting more users onto the significant resources.”

Partnering Purdue with Dell, DDN, and Nvidia, Anvil will feature:

  • 1,000 nodes based on AMD’s upcoming, liquid-cooled Milan architecture
  • A 100 Gbps HDR Infiniband interconnect
  • 10 PB of disk scratch and 3 PB of flash burst buffer
  • 16 GPU nodes featuring 4 Nvidia Volta Next GPUs per node
  • 32 1 TB large-memory nodes
  • A composable cloud subsystem
  • Archival and persistent storage
  • A production science gateway

The system, which will have a peak performance of 5.3 petaflops, will become operational by Sept. 30, 2021, with early-user access the previous summer. It will be 90% allocated through XSEDE’s XRAC allocations system, with the remainder as discretionary allocation by Purdue.

Delta: The Mark of Change

Bill Gropp, director of the National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, introduced the Category I Delta system. With more than 800 late-model Nvidia GPUs, the $10-million resource will be the largest GPU system by FLOPS in NSF’s portfolio at launch.

Titled after the Greek letter, “the name was chosen to indicate change,” said Gropp, PI of the new resource. “There’s a lot of change in the hardware and software and the way we make use of the systems.” Delta is intended to “help drive a broader adoption of GPU technology past the end of Dennard scaling.”

Delta will feature:

  • A mix of GPU configurations of late-model Nvidia GPUs to enable varied applications, surveying new and emerging research domains that can benefit from the technology
  • A non-POSIX file system that, while presenting a POSIX-like interface, will remove the need for strict adherence to that system’s semantics rules, improving system uptime and performance while allowing most applications to run without modification
  • A rich variety of interfaces, from command-line to science gateways, partnering with the Science Gateway Community Institute to develop practices for blending interactive and batch computing with visualization

Delta, like Anvil, will be 90% allocated through XSEDE, will start operations on Oct. 1, 2020.

Jetstream2: An Approaching Front in Cloud HPC

Jetstream2, the final new NSF Category I system, was introduced by PI David Hancock, director for advanced cyberinfrastructure at Indiana University. Building on the success of the Jetstream system, the new $10-million supercomputer will serve a similar role in interactive, configurable computing for research and education, thanks in part to agreements with Amazon, Google, and Microsoft to support cloud compatibility.

The configuration process for Jetstream2 is in its final phases and is still ongoing, Hancock said. But the new system will feature:

  • An enhanced IaaS model with improved orchestration support, elastic virtual clusters, and federated JupyterHubs
  • A commitment to over 99% uptime
  • A revamped user interface with unified instance management and multi-instance launch
  • Over 57,000 next-gen AMD Epyc cores
  • 360 Nvidia A100 GPUs, providing vGPUs via the MIG feature
  • Over 18 PB of storage
  • 100 GbE Mellanox network

The system, which will combine cyberinfrastructure from Indiana University, Arizona State University, Cornell University, the Texas Advanced Computing Center, and the University of Hawaii, is planned to begin early operations in August 2021 and production by October 2021. Additional partners include the University of Arizona, Johns Hopkins University [Galaxy team], and UCAR [Unidata team]. The system vendor partner for the project will be Dell, Inc. Jetstream2 will be XSEDE-allocated. 

Neocortex: The Next Leap Forward in Deep Learning

Paola Buitrago, director of Artificial Intelligence and Deep Learning at the Pittsburgh Supercomputing Center (PSC) at Carnegie Mellon University and the University of Pittsburgh, presented on the center’s new NSF Category II system, Neocortex. Named for the brain’s center for higher functions, the new machine will serve as an experimental testbed of new technology to accelerate deep learning by orders of magnitude, similar to the sea change introduced by GPU technology in 2012.

“It’s innovative and it’s meant to be exploratory,” PI Buitrago said. “In particular we have one goal that we would like to scale this technology … we aim to engage a wide audience and foster adoption of innovative technologies” in deep learning.

The $5-million system will pair Cerebras’s CS-1 and Hewlett Packard Enterprise (HPE) Superdome Flex technology to provide 800,000 AI-optimized cores with a uniquely quick interconnect. Neocortex will feature:

  • Two Cerebras CS-1 servers, each with a Wafer Scale Engine processor and its high-performance, on-chip memory and interconnect, integrated with an HPE Superdome Flex server via twelve 100 Gb/s ethernet links apiece
  • One HPE Superdome Flex large-memory system, featuring 24 TB of coherent shared memory, 32 Intel Xeon Platinum CPUs, and 205 TB of high-performance NVMe SSD storage
  • High usability, through support of popular TensorFlow and PyTorch frameworks, as well as other means
  • Federation with the upcoming Bridges-2 supercomputing platform via 8 HDR-200 links, enabling complete machine learning workflows and high-speed access to Bridges-2’s 15 PB Lustre file system and 8+ PB of tape archive, which will be jointly managed by the HPE Data Management Framework (DMF).

Neocortex will enter its early user program in the fall of 2020.

Voyager: Specialized Processors, Optimized Software for AI

Voyager, another $5-million NSF Category II system, was introduced by PI Amit Majumdar of the San Diego Supercomputer Center. Beginning with focused select projects in October 2021, the supercomputer will stress specialized processors for training and inference linked with a high-performance interconnect, x86 compute nodes, and a rich storage hierarchy.

“We are most interested to see this as an experimental machine and see its impact and engagement of the … user community,” Majumdar said. “So we will reach out to AI researchers from a wide variety of science, engineering and social sciences [fields], and there will be deep engagement with users.”

Supermicro Inc. and SDSC will jointly deploy Voyager, featuring:

  • Supermicro-integrated, AI-focused hardware to be determined, including specialized training and inference nodes attached to x86 compute nodes
  • Additional x86 nodes
  • Storage with the potential to experiment with different parallel file systems
  • DL frameworks such as TensorFlow and PyTorch
  • Software tools and libraries built for Voyager’s innovative architecture, enabling users to develop new AI techniques

Specific early user applications intended for Voyager will include the use of machine learning to improve trigger, event reconstruction, and signal-to-background in high-energy physics; achieving quantum-modeling-level accuracy in molecular simulations in chemistry, biophysics, and material science; and satellite image analysis.

Voyager will follow a three-year testbed phase focused on select deep user engagement with a minimum of two years of XSEDE-allocation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire