Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and workforce development, said Amy Friedlander, acting director of the NSF’s Office of Advanced Cybersecurity (OAC) in the final plenary session of PEARC20. On July 30, 2020, Friedlander explained how OAC’s combined focus on networking, cybersecurity and computing resources, as well as its possibly less-well-known concentration on data, software, and learning, is aimed at ensuring the nation’s CI develops with all of those imperatives accounted for.

The Practice and Experience in Advanced Research Computing (PEARC) Conference Series is a community-driven effort built on the successes of the past, with the aim to grow and be more inclusive by involving additional local, regional, national, and international CI and research computing partners spanning academia, government and industry. Sponsored by the ACM, the world’s largest educational and scientific computing society, PEARC20 took place between July 27 and 31.

This year’s theme, “Catch the Wave,” embodied the spirit of the community’s drive to stay on pace and in front of all the new waves in technology, analytics, and a globally connected and diverse workforce. Scientific discovery and innovation require a robust, innovative and resilient CI to support the critical research required to address world challenges in climate change, population, health, energy and environment.

It’s About Machines

When most people think of OAC, arguably the ecosystem of advanced computing resources funded by the office springs first to mind. Friedlander charted out the latest of these systems, and how OAC’s thinking about funding them has evolved. OAC currently funds three major classes of program: Leadership Class, Innovative Systems & Services, and Coordination Services.

The NSF-funded Frontera supercomputer of the Texas Advanced Computing Center at UT Austin is ranked #8 fastest in the world and #1 for academic systems, according to the June 2020 Top500 rankings. (Credit: TACC)

OAC has funded one “Leadership Class” system, Frontera at the Texas Advanced Computing Center. As the name suggests, this system began its operational life as an extreme-scale machine near the top of what is possible with HPC, supporting research across the NSF’s directorates. As examples, Friedlander highlighted work by Alexander Tchekhovskoy at Northwestern University in astrophysics, Ivan Soltesz at Stanford in neuroscience, and Paul Morin at the University of Minnesota in analysis of polar satellite imagery that utilized Frontera.

For the first time in 2019, OAC funded two types of system within the Innovative Systems & Services class: “Capacity Systems” and “Testbed Systems.” The latter are smaller, experimental systems, the former are ones intended to go into operation and to support major work by researchers. The smaller testbed systems are prototypes to provide an on-ramp for new capabilities in OAC’s operational systems. Examples of testbeds include Ookami at Stony Brook University, announced at PEARC19 last year; and Neocortex at the Pittsburgh Supercomputing Center (PSC) and Voyager at the San Diego Supercomputer Center (SDSC), announced at PEARC20.

The Capacity Systems, meant for production computation but at a smaller scale than the Leadership systems, might spread NSF funding over more systems at more centers. The aim is to expand the opportunities and access for a broad range of supercomputing projects, enabled by the fact that new technology allows smaller systems to provide performance that previously might have been associated with larger machines. Examples include Bridges-2 at PSC and Expanse at SDSC, announced at PEARC19; and Anvil at Purdue University, Delta at the National Center for Supercomputing Applications, and Jetstream2 at Indiana University, and, announced this year.

“The notion we had was to spur innovation in two ways,” Friedlander said. “One of them was to do more, smaller systems. Given the power that is now possible, rather than building another, say, $50-million or $30-million machine, could we break these into a set of smaller systems and have them more widely distributed?” As a second prod to innovation, “we had the opportunity to have a wider range of architectures and therefore [more] ability to…innovate.”

It’s About Connections

Another top OAC funding priority is expanding and integrating these machines, other computational systems, and researchers by supporting networking and cybersecurity. OAC has enabled connectivity at virtually every scale, backing global networking via the NSF International Research Network Connections Program (IRNC); national network infrastructure in partnership with Internet2 and ESNet; and campus up to state and regional connectivity via Campus Cyberinfrastructure (CC*). Hand in hand with such cybercommunication is security, which OAC supports via the Cybersecurity Innovation for Cyberinfrastructure Innovation (CICI) program.

Friedlander called out CC* and CICI for particular focus. For the former, she cited the strong campus-level partnerships that enable learning institutions to upgrade their campus networks and external connectivity to the national research and engineering fabric. Speaking of the latter, CICI’s operational cybersecurity focus fills a gap in Secure and Trustworthy Cyberspace (SaTC), the NSF’s current, $75-million flagship security program, by funding Transition to Practice (TTP) within SaTC.

In addition, the 2020 fiscal year saw an innovation track with linkages to FABRIC and the Open Science Grid (OSG), and six additional funded projects, through Exploring Clouds for Acceleration of Science (E-CAS), which will leverage commercial cloud capabilities to perform scientific research while developing technologies needed.

It’s About Data and Software

Less well known, perhaps, among the OAC’s portfolio are the programs that fund work in data and software. Friedlander reminded the audience that the Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program now integrates the Data Infrastructure Building Blocks (DIBBs) and Software Infrastructure for Sustained Innovation solicitations to support scientific innovation and discovery through improved data and software CI, following and helping to disseminate best practices in data management and software development.

“If you will, it’s another experiment by integrating these two programs under a single umbrella,” to fund operations that are flexible and responsive to the needs of the research community, Friedlander said. She’s particularly proud of how nimbly individual CSSI projects pivoted to support COVID-19 research. “My advice to all of you is, ‘Watch this space.’”

Friedlander gave specific examples of data/software advances enabled by OAC funding. GeoCODES, the Geoscience Cyberinfrastructure for Open Discovery in the Earth Sciences, a project supported by the NSF Geosciences directorate and OAC,  links a number of pilot NSF data facilities with web-based metadata organizations; the computing ecosystem of NSF’s XSEDE CI program; commercial cloud services; and the most popular cloud computing tools, such as HTML5, Jupyter, R, and MATLAB. Harnessing the Data Revolution (HDR) connects foundations, systems, and CI; data intensive science and engineering; and education and workforce elements to support research in a variety of fields in the life, environmental, materials, and earth science domains. SAGE explores new techniques for applying machine learning algorithms to data from such intelligent sensors and then build reusable software that can run programs within the embedded computer and transmit the results over the network to central computer servers to support a resilient, multimessenger network to detect gradual changes in domains such as early tsunami prediction.

Mostly, Though, It’s About People

Another thrust of OAC that may not be widely known is its increasing focus on developing the sophisticated workforce necessary to maintain technical progress, Friedlander said. The office funds training at multiple levels, supporting cyberscientists, professional staff, and of course domain-expert scientists focused on their fields rather than HPC. Examples included the NSF-wide Faculty Early Career Development Program, the CISE Research Initiation Initiative, CyberTraining-based Workforce Development for Advanced Cyberinfrastructure, the CISE-wide OAC Core Research Program, and Computing Innovation Fellows.

“All of this is always about people,” she added. “It always comes back to people and we’ve known it.”

The OAC Core Research Program is a solicitation meant to foster multidisciplinary, translational research in all aspects of CI. Research areas include architecture and middleware for extreme-scale systems, scalable algorithms and applications, and an ecosystem of advanced CI. OAC’s Data-Intensive Discovery Pathways, Friedlander explained, provides the “missing middle” that links the wealth of new data sources to scientific exploration by connecting computing, data, networking, software, and above all people.

Building Infrastructure Is Slow…But the Science Is Amazing

Globally, Friedlander said, OAC is focusing on building CI that moves discovery forward securely, without becoming an impediment to exploration and open communication.

“There are matters where the policy is about the technology, and there are matters where the technology can help us operationalize solutions or point to solutions,” she said. “And then there are the third category of matters that affect how we build the technology but are far broader than the technology itself.” An example of the last being the very big question of ensuring the trustworthiness of science, which spans from best practice in data handling to larger issues of trust between scientists and the larger society, as well as gender and equity questions.

“I’ve made the case…that building infrastructure systems, despite the pace of technological change, is actually fairly slow,” she said. “That isn’t to say that we’re not calling for innovation or that all we want to do is incremental development. But it is also true, if you look back at the major developments, that they are cumulative.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This