Implement Photonic Tensor Cores for Machine Learning?

By John Russell

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reported online in AIP Applied Physics Review last week, promises both performance gains and power advantages over traditional GPUs and other tensor core devices. While several photonic neural network designs have been explored, a photonic tensor core to perform tensor operations is yet to be implemented.

Photonics[i] encompasses the broad family of light-based technologies that spans fiber optics through hybrid optoelectronics. Optical interconnect technology, for example, is an important area of research to improve memory-to-processor and even processor-to-processor bandwidth. High bandwidth and low power are among photonics’ attractions.

In their paper, Photonic tensor cores for machine learning, Mario Miscuglio and Volker Sorger argue that in the age of heterogeneous computing, photonic-based specialized processors have great potential to augment electronic systems and may perform exceptionally well in network-edge devices as well as 5G communications. A pre-trained, photonic tensor core neural network used for inferencing, for example, would consume very little power.

Miscuglio told HPCwire, “Besides the increased speeds and bandwidths that can come from working directly in the optical domain, leveraging on the intrinsic optical nature of signal travelling in optical fibers, the advantage of using the photonic architecture is the lower power consumption for performing inference which can be useful for intelligent optical low-power sensors.”

Broadly speaking, neural networks make heavy use of matrix-vector multiplications. No surprise the latest GPUs and TPUs are much better than CPUs at this kind of calculation. The researchers summarize the challenge nicely in the paper:

“For a general-purpose processor offering high computational flexibility, these matrix operations take place serially (i.e., one-at-a-time) while requiring continuous access to the cache memory, thus generating the so-called “von Neumann bottleneck.” Specialized architectures for NNs, such as Graphic Process Units (GPUs) and Tensor Process Units (TPUs), have been engineered to reduce the effect of the von Neumann bottleneck, enabling cutting-edge machine learning models. The paradigm of these architectures is to offer domain-specificity, such as optimization for convolutions or Matrix-Vector Multiplications (MVM) performing operations, unlike CPUs, in parallel and thus deployment of a systolic algorithm.

“GPUs have thousands of processing cores optimized for matrix math operations, providing tens to hundreds of TFLOPS (Tera FLoating Point OPerations) of performance, which makes GPUs the obvious computing platform for deep NN-based AI and ML applications. GPUs and TPUs are particularly beneficial with respect to CPUs, but when used to implement deep NN performing inference on large 2-dimensional datasets such as images, they are rather power-hungry and require longer computation runtime (>tens of ms). Moreover, smaller matrix multiplication for less complex inference tasks [e.g., classification of handwritten digits of the Modified National Institute of Standards and Technology database (MNIST)] are still challenged by a non-negligible latency, predominantly due to the access overhead of the various memory hierarchies and the latency in executing each instruction in the GPU.”

They propose a tensor core unit implemented in photonics that relies on photonic multiplexed (WDM, wavelength division multiplexing) signals, “weighted, after filtering, using engineered multi-state photonic memories based on Ge2Sb2Se5 wires patterned on the waveguide. The photonic memories are reprogrammed by selectively changing the phase (amorphous/crystalline) of the wires, using electrothermal switching through Joule heating induced by tungsten electrodes. The photonic memory programming can be realized in parallel (few microseconds), if needed, or alternatively, this photonic tensor core can operate as a passive system with a pre-SET kernel matrix.”

See two figures from the paper below depicting 1) the core and 2) the memory.

The phase change memory technology is a critical advance, said Miscuglio, “Each neuron in our brain stores and processes data at the same time. Similarly, in our architecture we use memory cells that can be written electronically and can store multi-bit weights and can be read optically by simply letting light interact with the material. Our photonic memories rely on broadband transparent phase change materials, which unlike other implementation based on more established GST (germanium-antimony-tellurium), are characterized by negligible losses in the amorphous state at the telecom wavelength.”

“This is important because it enables for deeper architectures which can potentially solve more complex tasks without using additional laser sources or amplifiers. We also propose a multi-state photonic memory (4-bit) architecture, which can be easily erased and written on chip, using electrothermal heaters. All the memories have dedicated circuitry and can be written in parallel, unlike other implementations which rely on cumbersome optical writing/erasing either on-chip or off-chip,” he said.

Miscuglio said the architecture does not map a specific network architecture but is a more general accelerator for neural networks. Exploiting its modular architecture, one could “straightforwardly use the photonic TPU for a series of operations including but not limited to matrix-matrix multiplication, such as vector matrix multiplication, convolutions. These algebraic operations are key operations of many complex scientific and societal problems.”

“We think that in the long-term data centers would greatly benefit from this architecture since much of the information that they are handling are already in the optical domain. We don’t think it will replace supercomputers but will be useful as a preprocessing unit to work synergistically with supercomputers on data closer to the edge of the network to sorting and correlate the signals looking for specific chunks of data or patterns and consequently reducing data traffic.”

At the time of the paper they had tested the multi-state low-losses photonic memories devices “showing performances, which are in excellent agreement with the simulations.” Miscuglio said, “We developed the architecture of the single photonic core which performs 4×4 matrix multiplication are currently working on the development of the first generation of the photonic tensor Core. Regarding a timeline, we plan to have an experimental demonstration of the single core within six months to one year, and a fully functioning multicore tensor processor within the next couple of years.”

Stay tuned.

Link to AIP paper: https://aip.scitation.org/doi/full/10.1063/5.0001942

[i] Photonics is the physical science of light (photon) generation, detection, and manipulation through emissiontransmissionmodulationsignal processing, switching, amplification, and sensing.[1][2] Though covering all light‘s technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s, https://en.wikipedia.org/wiki/Photonics

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire