Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

By Hartwig Anzt and Jack Dongarra

August 5, 2020

Editor’s Note: To take advantage of proliferating hardware advances intended to deliver powerful mixed-precision computing, DoE has started an effort to develop new algorithms to make the most of these new capabilities. This new effort is a meaningful and timely pivot from traditional software optimization say Jack Dongarra and Hartwig Anzt. As a first step, Dongarra, Anzt, and colleagues have surveyed the numerical linear algebra community and pulled their findings into a rich report. Dongarra and Anzt’s brief commentary, presented here, provides a glimpse into the report’s contents and, they hope, enticement to dig deeper into the full report. Both are familiar figures in HPC. Brief bios are included at the end. 

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision formats. Also, server-line products are increasingly featuring low-precision special function units, such as the Nvidia tensor cores in the Oak Ridge National Laboratory’s Summit supercomputer, providing more than an order of magnitude of higher performance than what is available in IEEE double precision.

At the same time, the gap between the compute power on the one hand and the memory bandwidth on the other hand keeps increasing, making data access and communication prohibitively expensive compared to arithmetic operations. Having the choice between ignoring the hardware trends and continuing the traditional path, and adjusting the software stack to the changing hardware designs, the Department of Energy’s Exascale Computing Project decided for the aggressive step of building a multiprecision focus effort to take on the challenge of designing and engineering novel algorithms exploiting the compute power available in low precision and adjusting the communication format to the application-specific needs.

To start the multiprecision focus effort, we have written a survey of the numerical linear algebra community and summarized all existing multiprecision knowledge, expertise, and software capabilities in this landscape analysis report. We also include current efforts and preliminary results that may not yet be considered “mature technology,” but have the potential to grow into production quality within the multiprecision focus effort. As we expect the reader to be familiar with the basics of numerical linear algebra, we refrain from providing a detailed background on the algorithms themselves but focus on how mixed- and multiprecision technology can help to improve the performance of these methods and present highlights of application significantly outperforming the traditional fixed precision methods.

This report covers low precision BLAS operations, solving systems of linear systems, least squares problems, eigenvalue computations using mixed precision. These are demonstrated with dense and sparse matrix computations and direct and iterative methods. The ideas presented try to exploit low precision computations for the bulk of the compute time and then use mathematical techniques to enhance the accuracy of the solution to bring it to full precision accuracy with less time to solution.

On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. There are two reasons for this. Firstly, a 32-bit floating point arithmetic rate of execution is usually twice as fast as a 64-bit floating point arithmetic on most modern processors. Secondly, the number of bytes moved through the memory system is halved. It may be possible to care out the computation in lower precision, say 16-bit operations.

One approach exploiting the compute power in low precision is motivated by the observation that in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. The refinement can be accomplished, for instance, by means of the Newtons algorithm (see Equation (1)) which computes the zero of a function f (x) according to the iterative formula:

In general, we would compute a starting point and f (x) in single precision arithmetic, and the refinement process will be computed in double precision arithmetic. If the refinement process is cheaper than the initial computation of the solution, then double precision accuracy can be achieved nearly at the same speed as the single precision accuracy.

Stunning results can be achieved. In Figure 1, we are comparing the solution of a general system of linear equations using a dense solver on an Nvidia V100 GPU comparing the performance for 64-, 32-, and 16-bit floating point operations for the factorization and then using refinement techniques to improve the solution for the 32- and 16-bit solution to what was achieved using 64-bit factorization.

Figure 1: Mixed-precision iterative refinement in MAGMA and acceleration vs. FP64 solvers. Note ≈2%overhead per iteration, and more than 2×less overhead in terms of iterations for mixed-precision LU vs. regular FP16 LU (the 3 vs. 7 iterations until FP64 convergence)

The survey report presents much more detail on the methods and approaches using these techniques, see https://www.icl.utk.edu/files/publications/2020/icl-utk-1392-2020.pdf.

Author Bio – Hartwig Anzt

Hartwig Anzt is a Helmholtz-Young-Investigator Group leader at the Steinbuch Centre for Computing at the Karlsruhe Institute of Technology (KIT). He obtained his PhD in Mathematics at the Karlsruhe Institute of Technology, and afterwards joined Jack Dongarra’s Innovative Computing Lab at the University of Tennessee in 2013. Since 2015 he also holds a Senior Research Scientist position at the University of Tennessee. Hartwig Anzt has a strong background in numerical mathematics, specializes in iterative methods and preconditioning techniques for the next generation hardware architectures. His Helmholtz group on Fixed-point methods for numerics at Exascale (“FiNE”) is granted funding until 2022. Hartwig Anzt has a long track record of high-quality software development. He is author of the MAGMA-sparse open source software package managing lead and developer of the Ginkgo numerical linear algebra library, and part of the US Exascale computing project delivering production-ready numerical linear algebra libraries.

Author Bio – Jack Dongarra

Jack Dongarra received a Bachelor of Science in Mathematics from Chicago State University in 1972 and a Master of Science in Computer Science from the Illinois Institute of Technology in 1973. He received his PhD in Applied Mathematics from the University of New Mexico in 1980. He worked at the Argonne National Laboratory until 1989, becoming a senior scientist. He now holds an appointment as University Distinguished Professor of Computer Science in the Computer Science Department at the University of Tennessee, has the position of a Distinguished Research Staff member in the Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL), Turing Fellow in the Computer Science and Mathematics Schools at the University of Manchester, and an Adjunct Professor in the Computer Science Department at Rice University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire