Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

By Rob Farber

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Users of the Frontera supercomputer at the Texas Advanced Computing Center (TACC) are already using the NAMD patch to help accelerate research into the pathology and treatment of COVID-19.[i]

Benchmarks show that Intel’s optimized version of this workhorse application can run up to 1.8x faster on Intel Xeon Scalable processors compared to the non-optimized version.  Note that the 1.8x is coming from the Intel Xeon Gold 6148 results (specifically 0.66 compared to 1.17). The performance when combining both the software optimization and hardware performance of newer processors such as an Intel Xeon Platinum 9282 results in NAMD running 3x faster.

Figure 1: Speedups on the NAMD million atom STMV (Satellite Tobacco Mosaic Virus) benchmark.

Considered a reference by the NAMD scientific community, the million atom STMV (Satellite Tobacco Mosaic Virus) benchmark is indicative of the relative performance improvement scientists can expect for their own simulations. A 1.8x speedup in the NAMD code means that scientists can potentially obtain their molecular modeling results 1.8x faster or have their runs tie up 1.8x fewer nodes.

David Hardy is a senior research programmer in the Theoretical and Computational Biophysics Group of the Beckman Institute at the University of Illinois at Urbana-Champaign and is the lead developer of NAMD. He says, “NAMD development continues to benefit from a long-standing relationship with Intel, providing critical insights into current and upcoming technology, together with software engineering expertise and code contributions to improve performance.”

Optimizing a top HPC application

NAMD (short for Nanoscale Molecular Dynamics) is a widely utilized application in the HPC space. [ii] Researchers use NAMD to simulate detailed atomic scale models that can illuminate molecular structural details of how a virus works and what aspects of its structure offer potential targets for vaccines and treatments.

John Cazes (director of High Performance Computing, TACC) sees a tremendous benefit for NAMD users at TACC: “From Stampede to Stampede2 and now on Frontera, NAMD has been a major tool for scientists using TACC resources. We track application usage regularly and NAMD is always in the top 5, if not number one, each quarter. The Intel and UIUC improvements to NAMD will benefit our users on both Stampede2 and Frontera. We look forward to updating our installs when version 2.15 with AVX-512 support is released.”

Million node hour savings scales to large systems

Intel believes the significant performance boost from the optimized NAMD code will allow researchers to achieve longer timescales in the simulation of relevant molecules associated with disease, and by extension enable them to better understand aspects of infection with atom-level detail.

More specifically, the Intel optimized code speeds the computation of non-bonded atomic operations, which consume most of the NAMD runtime. The optimization uses a “tile” algorithm [iii] that increases the computational efficiency of each computational node by exploiting the Intel AVX-512 vector units and larger cache of the Intel Xeon Scalable processors. The tile algorithm does not affect NAMD’s scaling behavior across nodes, so researchers essentially get a 1.8x more powerful supercomputer simply by using the optimized code on large simulations.

Benchmarks confirm the speedup potential. Shown below is the strong scaling of NAMD on the TACC Frontera supercomputer running two different large synthetic benchmark systems, each assembled from “gluing” the STMV periodic cube (1,066,628 atoms) into an array of STMV to produce a bigger periodic system. The smaller system consists of a 5x2x2 array of 20 STMV (totaling about 21M atoms), and the larger system consists of a 7x6x5 array of 210 STMV (totaling about 224M atoms). Shown in Figure 2 are the performance results of the three different versions of NAMD (AVX2, AVX-512, and AVX-512 tiles, as compared in Figure 1) running the two synthetic benchmark systems, confirming the speedup available from the latest AVX-512 Tiles optimization and demonstrating NAMD’s scalability on Frontera for large simulations. The three NAMD versions use the Charm++ runtime system with the UCX communication layer, all built with the Intel 2019 C++ compiler.

Figure 2: Scaling results for the three different versions of NAMD (AVX2, AVX-512, and AVX-512 tiles) running two different benchmark systems (20 STMV and 210 STMV) on the TACC Frontera supercomputer. These results confirm the speedup available from the latest AVX-512 Tiles optimization.

Understanding the impact

To understand the impact of the optimized NAMD code, consider the efforts of a research team from the University of California San Diego (UCSD) led by Rommie Amaro (professor of Chemistry and Biochemistry at UCSD).

TACC reports that Amaro and her team have already used about 2.3 million Frontera node hours for molecular dynamics simulations and modeling, the most among any researchers using the system to study COVID-19. [iv]

The project provides an example of the magnitude of compute resources involved in a single research study. According to the Intel benchmarks, the optimizations have the potential for million-node hour savings for just this one project. Mike Brown, principal engineer in HPC at Intel Corporation, adds, “The savings are cumulative. When added with the many research projects in molecular biophysics running NAMD on AVX-512 capable clusters, both at TACC and other institutions, the impact to science can be very significant.”

The societal impact of such large-scale molecular studies can be huge. Amaro is a corresponding author of another recent study in which simulations on the National Science Foundation (NSF)-funded Frontera supercomputer reveal surprising information about the atomic makeup of the coronavirus’s exterior shield. This shell is the part of the virus we are trying to destroy when we wash our hands for 20 seconds. Contact by rubbing with soap destroys this viral shield.

Once inside the body, this shell camouflages the virus so it can hide itself from defending antibodies in our immune system.

The study, published June 12, 2020 discovered that shield’s sugary coating of molecules, called glycans, also prime the coronavirus to infect a cell by changing the shape of an internal spike protein.

Amaro noted, “That was really surprising to see. It’s one of the major results of our study. It suggests that the role of glycans in this case is going beyond shielding to potentially having these chemical groups actually being involved in the dynamics of the spike protein,” she said.

She likened the action of the glycan to pulling the trigger of a gun. “When that bit of the spike goes up, the finger is on the trigger of the infection machinery.” Amaro said. “When it gets like that, all it has to do is come up against an ACE2 receptor in the human cell, and then it’s going to bind super tightly and the cell is basically infected.”

Figure 3: The sugary coating of molecules called glycans (deep blue) that shield the SARS-CoV-2 spike from detection by the human immune system. (Credit: Lorenzo Casalino (UCSD) et al.)

Visualizing the model dynamics provides a wealth of information

Scientists have to study and visualize the dynamics of these atomic level models so they can understand what the computer model is telling them.

The key word is “visualize” as scientists also require powerful visual capabilities that can display the tremendous amount of data generated by optimized models running on world class supercomputers. Molecular dynamics simulations performed with NAMD (and other packages) are all about depicting the atoms of the system in motion. However, it’s not just a question of modeling the system, it’s also about visualizing the dynamics. Both visualization and simulation are closely related.

Amaro describes the dynamics of a good viral model as a “computational microscope” that lets scientists study “the wiggles and jiggles of the atoms”. [v] The latter reference pays homage to Physicist Richard Feynman who famously said, “Everything that living things do can be understood in terms of the jiggling and wiggling of atoms.”[vi]

To give others a sense of the jiggly nature of the atoms in these simulations, Amaro’s team created a moving visualization of the coronavirus spiked-protein, which can give readers a sense. This visualization is based on research they performed at TACC.

VMD: A visualization tool for NAMD users

Intel’s NAMD optimization work dovetails nicely with their open source SDVis (Software Defined Visualization) initiative with various industry collaborators which allows scientists to visualize huge data sets using CPUs – even on exascale supercomputers. [vii] Many major visualization tools such as ParaView, VisIt, and VMD (Visual Molecular Dynamics) have adopted the Intel SDVis libraries which include Embree, OSPRay, and OpenSWR.

For leadership research such as the coronavirus envelope simulations, the SDVis solutions are the right tool at the right time as they were designed to handle extremely large, data intensive visualizations. VMD in particular is pertinent as it was designed to be used in conjunction with NAMD, for the setup and analysis of the atomic scale systems,[viii] and has a demonstrated ability to render large models comprising hundreds of millions of atoms. [ix]

CPU-based rendering is becoming the norm in the HPC community. At TACC for example, Paul Navrátil (Director of Visualization, TACC) points out that, “CPU-based SDVis will be our primary visual analysis mode on Frontera.” Looking to the future, please see the article “Preparing for the Arrival of Aurora with CPU-based Interactive Visualization.” For general information on SDVis, please consult sdvis.org.

Summary

Intel NAMD optimizations offer significant improvements on Intel Xeon Scalable processor workload that will free millions of node hours of time for additional research. Benchmarks show that the optimized version with AVX-512 support can run up to 1.8x faster on Intel Xeon Scalable processors compared to the non-optimized version. The impact of these optimizations is cumulative.

UIUC and Intel continue to collaborate on software optimizations and algorithms to best exploit leading supercomputers, including Aurora, the planned U.S. exascale supercomputer to be located at Argonne National Laboratory. There is hope that NAMD will get even faster, as Mike Brown notes the CPU optimization work for NAMD is not done.

Besides NAMD, other Intel optimization efforts include LAMMPS (a molecular dynamics code), GROMACS (a package for protein, lipids, and nucleic acids simulation), AMBER (another molecular dynamics code), and others [x] to facilitate scientific innovation on the largest CPU-based supercomputers.

About the Author

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at [email protected]

[i] While NAMD 2.13 does include optimizations for vector computing (in part from previous collaboration between Intel and UIUC), the CPU algorithm that considers each interaction between pairs of atoms does not make the best use of AVX-512 vector units.

[ii] Intersect360

[iii] https://link.springer.com/chapter/10.1007%2F978-3-319-46079-6_14

[iv] https://www.hpcwire.com/2020/06/16/researchers-use-frontera-to-investigate-covid-19s-insidious-sugar-coating/

[v] https://beta.nsf.gov/science-matters/once-considered-too-high-risk-supercomputer-simulations-wiggling-and-jiggling-atoms

[vi] American Scientist 

[vii] https://dl.acm.org/doi/10.5555/3293524.3293526

[viii] https://en.wikipedia.org/wiki/NAMD

[ix] http://www.ks.uiuc.edu/Research/vmd/

[x] https://venturebeat.com/2020/06/08/covid-19-hpc-consortiums-supercomputing-effort-is-helping-scientists-better-understand-covid-19/

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NIST/Xanadu Researchers Report Photonic Quantum Computing Advance

March 3, 2021

Researchers from the National Institute of Standards and Technology (NIST) and Xanadu, a young Canada-based quantum computing company, have reported developing a full-stack, photonic quantum computer able to carry out th Read more…

By John Russell

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily con Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective immediately. Hotard replaces long-time Cray exec Pete Ungaro Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been founding director of ORNL's Future Technologies Group which i Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AWS Solution Channel

Moderna Accelerates COVID-19 Vaccine Development on AWS

Marcello Damiani, Chief Digital and Operational Excellence Officer at Moderna, joins Todd Weatherby, Vice President of AWS Professional Services Worldwide, for a discussion on developing Moderna’s COVID-19 vaccine, scaling systems to enable global distribution, and leveraging cloud technologies to accelerate processes. Read more…

Supercomputers Enable First Holistic Model of SARS-CoV-2, Showing Spike Proteins Move in Tandem

February 28, 2021

Most models of SARS-CoV-2, the coronavirus that causes COVID-19, hone in on key features of the virus: for instance, the spike protein. Some of this is attributable to the relative importance of those features, but most Read more…

By Oliver Peckham

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been f Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

By Mariana Iriarte

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire