Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

By Rob Farber

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Users of the Frontera supercomputer at the Texas Advanced Computing Center (TACC) are already using the NAMD patch to help accelerate research into the pathology and treatment of COVID-19.[i]

Benchmarks show that Intel’s optimized version of this workhorse application can run up to 1.8x faster on Intel Xeon Scalable processors compared to the non-optimized version.  Note that the 1.8x is coming from the Intel Xeon Gold 6148 results (specifically 0.66 compared to 1.17). The performance when combining both the software optimization and hardware performance of newer processors such as an Intel Xeon Platinum 9282 results in NAMD running 3x faster.

Figure 1: Speedups on the NAMD million atom STMV (Satellite Tobacco Mosaic Virus) benchmark.

Considered a reference by the NAMD scientific community, the million atom STMV (Satellite Tobacco Mosaic Virus) benchmark is indicative of the relative performance improvement scientists can expect for their own simulations. A 1.8x speedup in the NAMD code means that scientists can potentially obtain their molecular modeling results 1.8x faster or have their runs tie up 1.8x fewer nodes.

David Hardy is a senior research programmer in the Theoretical and Computational Biophysics Group of the Beckman Institute at the University of Illinois at Urbana-Champaign and is the lead developer of NAMD. He says, “NAMD development continues to benefit from a long-standing relationship with Intel, providing critical insights into current and upcoming technology, together with software engineering expertise and code contributions to improve performance.”

Optimizing a top HPC application

NAMD (short for Nanoscale Molecular Dynamics) is a widely utilized application in the HPC space. [ii] Researchers use NAMD to simulate detailed atomic scale models that can illuminate molecular structural details of how a virus works and what aspects of its structure offer potential targets for vaccines and treatments.

John Cazes (director of High Performance Computing, TACC) sees a tremendous benefit for NAMD users at TACC: “From Stampede to Stampede2 and now on Frontera, NAMD has been a major tool for scientists using TACC resources. We track application usage regularly and NAMD is always in the top 5, if not number one, each quarter. The Intel and UIUC improvements to NAMD will benefit our users on both Stampede2 and Frontera. We look forward to updating our installs when version 2.15 with AVX-512 support is released.”

Million node hour savings scales to large systems

Intel believes the significant performance boost from the optimized NAMD code will allow researchers to achieve longer timescales in the simulation of relevant molecules associated with disease, and by extension enable them to better understand aspects of infection with atom-level detail.

More specifically, the Intel optimized code speeds the computation of non-bonded atomic operations, which consume most of the NAMD runtime. The optimization uses a “tile” algorithm [iii] that increases the computational efficiency of each computational node by exploiting the Intel AVX-512 vector units and larger cache of the Intel Xeon Scalable processors. The tile algorithm does not affect NAMD’s scaling behavior across nodes, so researchers essentially get a 1.8x more powerful supercomputer simply by using the optimized code on large simulations.

Benchmarks confirm the speedup potential. Shown below is the strong scaling of NAMD on the TACC Frontera supercomputer running two different large synthetic benchmark systems, each assembled from “gluing” the STMV periodic cube (1,066,628 atoms) into an array of STMV to produce a bigger periodic system. The smaller system consists of a 5x2x2 array of 20 STMV (totaling about 21M atoms), and the larger system consists of a 7x6x5 array of 210 STMV (totaling about 224M atoms). Shown in Figure 2 are the performance results of the three different versions of NAMD (AVX2, AVX-512, and AVX-512 tiles, as compared in Figure 1) running the two synthetic benchmark systems, confirming the speedup available from the latest AVX-512 Tiles optimization and demonstrating NAMD’s scalability on Frontera for large simulations. The three NAMD versions use the Charm++ runtime system with the UCX communication layer, all built with the Intel 2019 C++ compiler.

Figure 2: Scaling results for the three different versions of NAMD (AVX2, AVX-512, and AVX-512 tiles) running two different benchmark systems (20 STMV and 210 STMV) on the TACC Frontera supercomputer. These results confirm the speedup available from the latest AVX-512 Tiles optimization.

Understanding the impact

To understand the impact of the optimized NAMD code, consider the efforts of a research team from the University of California San Diego (UCSD) led by Rommie Amaro (professor of Chemistry and Biochemistry at UCSD).

TACC reports that Amaro and her team have already used about 2.3 million Frontera node hours for molecular dynamics simulations and modeling, the most among any researchers using the system to study COVID-19. [iv]

The project provides an example of the magnitude of compute resources involved in a single research study. According to the Intel benchmarks, the optimizations have the potential for million-node hour savings for just this one project. Mike Brown, principal engineer in HPC at Intel Corporation, adds, “The savings are cumulative. When added with the many research projects in molecular biophysics running NAMD on AVX-512 capable clusters, both at TACC and other institutions, the impact to science can be very significant.”

The societal impact of such large-scale molecular studies can be huge. Amaro is a corresponding author of another recent study in which simulations on the National Science Foundation (NSF)-funded Frontera supercomputer reveal surprising information about the atomic makeup of the coronavirus’s exterior shield. This shell is the part of the virus we are trying to destroy when we wash our hands for 20 seconds. Contact by rubbing with soap destroys this viral shield.

Once inside the body, this shell camouflages the virus so it can hide itself from defending antibodies in our immune system.

The study, published June 12, 2020 discovered that shield’s sugary coating of molecules, called glycans, also prime the coronavirus to infect a cell by changing the shape of an internal spike protein.

Amaro noted, “That was really surprising to see. It’s one of the major results of our study. It suggests that the role of glycans in this case is going beyond shielding to potentially having these chemical groups actually being involved in the dynamics of the spike protein,” she said.

She likened the action of the glycan to pulling the trigger of a gun. “When that bit of the spike goes up, the finger is on the trigger of the infection machinery.” Amaro said. “When it gets like that, all it has to do is come up against an ACE2 receptor in the human cell, and then it’s going to bind super tightly and the cell is basically infected.”

Figure 3: The sugary coating of molecules called glycans (deep blue) that shield the SARS-CoV-2 spike from detection by the human immune system. (Credit: Lorenzo Casalino (UCSD) et al.)

Visualizing the model dynamics provides a wealth of information

Scientists have to study and visualize the dynamics of these atomic level models so they can understand what the computer model is telling them.

The key word is “visualize” as scientists also require powerful visual capabilities that can display the tremendous amount of data generated by optimized models running on world class supercomputers. Molecular dynamics simulations performed with NAMD (and other packages) are all about depicting the atoms of the system in motion. However, it’s not just a question of modeling the system, it’s also about visualizing the dynamics. Both visualization and simulation are closely related.

Amaro describes the dynamics of a good viral model as a “computational microscope” that lets scientists study “the wiggles and jiggles of the atoms”. [v] The latter reference pays homage to Physicist Richard Feynman who famously said, “Everything that living things do can be understood in terms of the jiggling and wiggling of atoms.”[vi]

To give others a sense of the jiggly nature of the atoms in these simulations, Amaro’s team created a moving visualization of the coronavirus spiked-protein, which can give readers a sense. This visualization is based on research they performed at TACC.

VMD: A visualization tool for NAMD users

Intel’s NAMD optimization work dovetails nicely with their open source SDVis (Software Defined Visualization) initiative with various industry collaborators which allows scientists to visualize huge data sets using CPUs – even on exascale supercomputers. [vii] Many major visualization tools such as ParaView, VisIt, and VMD (Visual Molecular Dynamics) have adopted the Intel SDVis libraries which include Embree, OSPRay, and OpenSWR.

For leadership research such as the coronavirus envelope simulations, the SDVis solutions are the right tool at the right time as they were designed to handle extremely large, data intensive visualizations. VMD in particular is pertinent as it was designed to be used in conjunction with NAMD, for the setup and analysis of the atomic scale systems,[viii] and has a demonstrated ability to render large models comprising hundreds of millions of atoms. [ix]

CPU-based rendering is becoming the norm in the HPC community. At TACC for example, Paul Navrátil (Director of Visualization, TACC) points out that, “CPU-based SDVis will be our primary visual analysis mode on Frontera.” Looking to the future, please see the article “Preparing for the Arrival of Aurora with CPU-based Interactive Visualization.” For general information on SDVis, please consult sdvis.org.

Summary

Intel NAMD optimizations offer significant improvements on Intel Xeon Scalable processor workload that will free millions of node hours of time for additional research. Benchmarks show that the optimized version with AVX-512 support can run up to 1.8x faster on Intel Xeon Scalable processors compared to the non-optimized version. The impact of these optimizations is cumulative.

UIUC and Intel continue to collaborate on software optimizations and algorithms to best exploit leading supercomputers, including Aurora, the planned U.S. exascale supercomputer to be located at Argonne National Laboratory. There is hope that NAMD will get even faster, as Mike Brown notes the CPU optimization work for NAMD is not done.

Besides NAMD, other Intel optimization efforts include LAMMPS (a molecular dynamics code), GROMACS (a package for protein, lipids, and nucleic acids simulation), AMBER (another molecular dynamics code), and others [x] to facilitate scientific innovation on the largest CPU-based supercomputers.

About the Author

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at [email protected]

[i] While NAMD 2.13 does include optimizations for vector computing (in part from previous collaboration between Intel and UIUC), the CPU algorithm that considers each interaction between pairs of atoms does not make the best use of AVX-512 vector units.

[ii] Intersect360

[iii] https://link.springer.com/chapter/10.1007%2F978-3-319-46079-6_14

[iv] https://www.hpcwire.com/2020/06/16/researchers-use-frontera-to-investigate-covid-19s-insidious-sugar-coating/

[v] https://beta.nsf.gov/science-matters/once-considered-too-high-risk-supercomputer-simulations-wiggling-and-jiggling-atoms

[vi] American Scientist 

[vii] https://dl.acm.org/doi/10.5555/3293524.3293526

[viii] https://en.wikipedia.org/wiki/NAMD

[ix] http://www.ks.uiuc.edu/Research/vmd/

[x] https://venturebeat.com/2020/06/08/covid-19-hpc-consortiums-supercomputing-effort-is-helping-scientists-better-understand-covid-19/

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Swiss Supercomputer Enables Ultra-Precise Climate Simulations

September 17, 2020

As smoke from the record-breaking West Coast wildfires pours across the globe and tropical storms continue to form at unprecedented rates, the state of the global climate is once again looming in the public eye. Owing to Read more…

By Oliver Peckham

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk management, and high-frequency trading, as told by a group of l Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

Legacy HPC System Seeds Supercomputing Excellence at UT Dallas

September 16, 2020

What happens to supercomputers after their productive life at an academic research center ends? The question often arises when people hear that the average age of a top supercomputer at retirement is about five years. Rest assured — systems aren’t simply scrapped. Instead, they’re donated to organizations and institutions that can make... Read more…

By Aaron Dubrow

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

HPC Strategist Dave Turek Joins DNA Storage (and Computing) Company Catalog

September 11, 2020

You've heard the saying "flash is the new disk and disk is the new tape," which traces its origins back to Jim Gray*. But what if DNA-based data storage could o Read more…

By Tiffany Trader

Google’s Quantum Chemistry Simulation Suggests Promising Path Forward

September 9, 2020

A much-anticipated prize in quantum computing is the ability to more accurately model chemical bonding behavior. Doing so should lead to better chemical synthes Read more…

By John Russell

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This