AI Chip Start-up Groq to Detail Technology Progress in Fall

By John Russell

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this year and double again by the end of next year as it transitions to commercial development. Groq’s new neural network chip – the Tensor Streaming Processor – is well along in development and designed to speed inferencing and consume low power. Among the new investors are D1 Capital, announced yesterday, and TDK Ventures, announced last week.

The amount of the new investments was not disclosed (see Groq release) but it’s no doubt good news for the start-up. Groq is one of many newcomers seeking to make waves in the AI market. It was started in the 2017 timeframe by former Google employees including Groq CEO Jonathan Ross who participated in TPU development at Google. Bill Leszinske, VP of products and marketing, told HPCwire more details about the technology roadmap and early customers would be discussed at the AI Hardware Summit this fall.

“Jonathan Ross will specifically talk about the products that we’re shipping and have shipped to customers,” Leszinske said. “We have our core piece of silicon and the initial software stack that we’ve been working on. That has shipped as a PCIe add-in card that goes into servers and very high-end workstations.” Groq is currently targeting a few market segments, in particular those with low power and high performance requirements such as autonomous vehicles. He cited HPC more broadly as a target market as well as power-hungry hyperscaler datacenters. Leszinske said several government labs would be working with the new chip. That wouldn’t be surprising given many national labs – Argonne, for example – have set up AI chip test beds to assess new devices.

The TSP is being fabbed on a 14nm process by Global Foundaries and a fairly thorough description of its architecture was presented at IEEE’s 2020 International Symposium on Computer Architecture (link to paper).

Briefly, the idea is to remove some of the overhead (instructions) required to use general purpose microprocessors by physically moving and reorganizing functional elements (e.g. with needed memory and support located nearby). “Instead of creating a small programmable core and replicating it dozens or hundreds of times, the TSP houses a single enormous processor that has hundreds of functional units. This novel architecture greatly reduces instruction-decoding overhead, and handles integer and floating-point data, which makes delivering the best accuracy for inference and training a breeze,” says Groq.

Proximity, reduced number of instructions per op required, and efficient data flow all work together to reduce latency and increase performance, says Groq. Here’s a brief portion of the description of the architecture excerpted from the Groq paper:

“To understand the novelty of our approach, consider the chip organization shown in Figure 1(a). In a conventional chip multiprocessor (CMP) each “tile” is an independent core which is interconnected using the on-chip network to exchange data between cores. Instruction execution is carried out over several stages: 1) instruction fetch (IF), 2) instruction decode (ID), 3) execution on ALUs (EX), 4) memory access (MEM), and 5) writeback (WB) to update the results in the GPRs. In contrast from conventional multicore, where each tile is a heterogeneous collection of functional units but globally homogeneous, the TSP inverts that and we have local functional homogeneity but chip-wide (global) heterogeneity.

“The TSP reorganizes the homogeneous two-dimensional mesh of cores in Figure 1(a) into the functionally sliced microarchitecture shown in Figure 1(b). In this approach, each tile implements a specific function and is stacked vertically into a “slice” in the Y-dimension of the 2D on-chip mesh. We disaggregate the basic elements of a core in Figure 1(a) per their respective functions: instruction control and dispatch (ICU), memory (MEM), integer (INT) arithmetic, float point (FPU) arithmetic, and network (NET) interface, as shown by the slice labels at the top of Figure 1(b).

“In this organization, each functional slice is independently controlled by a sequence of instructions specific to its on-chip role. For instance, the MEM slices support Read but not Add or Mul, which are only in arithmetic functional slices (the VXM and MXM slices).”

The company reports the following specs:

  • INT8 – 1PetaOp/s @ 1.25GHz
  • FP16 – 250mTFLOPS @ 1.25GHz
  • Transistors – 26.8B transistors
  • Process – 14nm
  • SRAM – 220MB on-die
  • Memory Bandwidth – 80TB/s on-die
  • Host Interface – PCIe Gen 4 x 16 31.GB/s in each direction
  • C2C Interface – Up to 16 chip-to-chip interconnects
  • Driver – Open source, simple stack
  • ECC – End to end chip protection

One question is around programming required to take advantage of the architecture. The company is still developing tools.

Leszinske said, “We have two efforts. One is this low API that gives folks high control over implementing exactly what they want and getting the most performance out of the hardware. In addition to that, we are working on a compiler. Given customer interest we had to prioritize the Groq API over the compiler as our first set of deliverables. So as we’re releasing software to customers, which again, we’ll talk about at the end of September publicly, we are using the Groq API as the initial development platform for customers. We’ll talk about the compiler later on in the year, as we start to ramp some early customers.”

Groq has also struck deal with HPC cloud specialist Nimbix which presumably would become both a development platform and deployment platform.

Link to Groq video on its architecture: https://www.youtube.com/watch?time_continue=82&v=pb0PYhLk9r8&feature=emb_logo

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Swiss Supercomputer Enables Ultra-Precise Climate Simulations

September 17, 2020

As smoke from the record-breaking West Coast wildfires pours across the globe and tropical storms continue to form at unprecedented rates, the state of the global climate is once again looming in the public eye. Owing to Read more…

By Oliver Peckham

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk management, and high-frequency trading, as told by a group of l Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

Legacy HPC System Seeds Supercomputing Excellence at UT Dallas

September 16, 2020

What happens to supercomputers after their productive life at an academic research center ends? The question often arises when people hear that the average age of a top supercomputer at retirement is about five years. Rest assured — systems aren’t simply scrapped. Instead, they’re donated to organizations and institutions that can make... Read more…

By Aaron Dubrow

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

HPC Strategist Dave Turek Joins DNA Storage (and Computing) Company Catalog

September 11, 2020

You've heard the saying "flash is the new disk and disk is the new tape," which traces its origins back to Jim Gray*. But what if DNA-based data storage could o Read more…

By Tiffany Trader

Google’s Quantum Chemistry Simulation Suggests Promising Path Forward

September 9, 2020

A much-anticipated prize in quantum computing is the ability to more accurately model chemical bonding behavior. Doing so should lead to better chemical synthes Read more…

By John Russell

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This