CASL Wraps up 10 Years of Solving Nuclear Problems — and Hands Toolbox to Industry

By Kristi L Bumpus

August 17, 2020

In 2010, the U.S. Department of Energy (DOE) established the Consortium for Advanced Simulation of Light Water Reactors (CASL), at Oak Ridge National Laboratory (ORNL). This story explores how CASL, DOE’s first Energy Innovation Hub, rapidly developed high performance computing tools that changed the ways an industry thinks about modeling and simulation.

Ten years ago, the Department of Energy put out a call for innovators to change the world of nuclear energy.

What DOE hoped to accomplish with the then-new Energy Innovation Hubs concept was “translational research” — research and development on an accelerated timeline that could solve the problems facing the nuclear industry, not only extending the life of the current reactor fleet, but also paving the way for more efficient next-generation reactors.

Those solutions would then go straight to industry as quickly as possible. DOE was willing to put $125 million toward a “hub” for at least five years to see that happen.

The Oak Ridge National Laboratory-based Consortium for Advanced Simulation of Light Water Reactors — a national collaboration of top scientists and engineers from government, academia and industry who had the privilege of making up DOE’s first Energy Innovation Hub — showed enough success that DOE renewed its funding for a second five-year period.

The consortium wrapped in June, having solved some of the biggest nuclear reactor challenges, and is handing industry a comprehensive software suite with the tools and support to use it immediately and on an ongoing basis.

“We’ve come through on the bet,” said former CASL director Doug Kothe.

Involving industry

Industry buy-in was a critical element of the hub’s success, said original CASL member John Turner. The Tennessee Valley Authority, Westinghouse and the Electric Power Research Institute were partners from the start.

“That was a key part of the project, having industry involved early on, but we didn’t have to convince them how valuable this was,” Turner said. “They were coming to the table saying, ‘We need help here.’ Industry was recognizing the gaps themselves, and they respected our expertise and were motivated to collaborate with us.”

Other partners included Idaho, Los Alamos and Sandia national laboratories; Massachusetts Institute of Technology; the University of Michigan and North Carolina State University.

“It was an ambitious undertaking,” said Dave Kropaczek, a chief scientist with CASL who became its director in 2018 and was an early member of the industry council. “It had a huge scope. I was skeptical but curious.”

With hundreds of scientists and engineers at the top of their field working together, the consortium set a goal to develop broad capabilities to:

  • Accurately predict and reduce instances of undesirable boiling conditions, thereby increasing fuel performance and core power. An example was departure from nucleate boiling, the point at which a steam blanket forms on the fuel rod surface, insulating it and reducing heat transfer rapidly.
  • Predict and manage “crud,” which are deposits that form on fuel rods that can shorten their efficiency and lifespan, increasing the cost of power.
  • Predict fuel pellet and cladding integrity during normal operation and postulated accident scenarios, giving power plant operators greater flexibility in when and how much power is produced.
  • Predict how neutrons interact with large reactor components to provide a guide for which materials are likely to degrade on what timeline, as well as to help reactor owners decide when to replace parts for improved performance.
VERA’s tools allow a virtual window inside the reactor core, down to a molecular level. Image courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy.

How would they do that? By developing an exceedingly accurate virtual reactor.

‘The modern era of simulation’

The field of modeling and simulation wasn’t new to the industry; it had been part of nuclear engineering for decades.

The challenge, though, was bridging the gap between its current capabilities and its possibilities, Turner said.

“At the time, industry had become more followers than leaders in simulation; they were used to lower-fidelity, lower-confidence simulations,” Kothe said. “We opened their eyes to the possibilities and brought them into the modern era of simulation. We demystified the simulation technology. It wasn’t a black box; they were part of the development, and they could roll up their sleeves and go in there and see that it’s not a bunch of smoke and mirrors. They saw that this tool was for everyone and that the staffers involved were talented and committed and listened to them.”

The stakes were high. Nuclear produces roughly 20 percent of the total U.S. power supply but more than half its carbon-free electricity. While the country’s demand for power is expected to increase by at least 25 percent by 2030, the average age of the U.S. nuclear fleet is close to 40. As of last year, 17 reactors at 16 sites were in various stages of decommissioning, yet only one new reactor has gone online in the U.S. this century. Extending the life and efficiency of these older, existing reactors meant buying time and power until the next generation of reactors is developed and put into service.

Gil Weigand, then CASL’s startup manager, “pushed us very hard to release a Version 1 software package after only one year,” Turner said. “If we looked back, we’d probably be pretty underwhelmed with what that was. But it was still a big achievement to rise to Gil’s challenge and release a software package after only a year.”

Four years after that first release when CASL’s Virtual Environment for Reactor Applications, or VERA, accurately simulated the 2016 startup of TVA’s Watts Bar Unit 2 — the only reactor to go online in the U.S. in the 21st century — it became obvious that the project would have a permanent impact on the industry.

“Early in CASL, everyone involved established a strong vision for the program with aggressive challenge problems that drove development,” said Jess Gehin, who was initially a focus area leader and became CASL’s second director. “Hard decisions were made on research directions that resulted in delivery of game-changing capabilities that showed that modern modeling and simulation capabilities can deliver significant predictive and application improvements over the engineering tools in use at the time.”

To read the full article, visit https://www.ornl.gov/news/casl-wraps-10-years-solving-nuclear-problems-and-hands-toolbox-industry

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire