Supercomputers Just Hosted the Most Detailed Tornado and Earthquake Simulations Ever

By Oliver Peckham

August 17, 2020

Even with the pandemic raging, natural disasters are having a busy 2020: tornadoes ravaged Nashville a few months ago; the chances of a new “big one” have dramatically risen in California’s fault zones; and meteorologists are anticipating a stronger-than-usual hurricane season for the U.S. More than ever, understanding and anticipating these events is crucial – and now, two teams of researchers have announced that they have used supercomputers to run the higher-resolution-ever simulations of tornadoes and earthquakes.

While researchers have understood the basics of tornado formation for some time, the particulars are difficult to work out – so difficult, in fact, that the National Weather Service has a 70 percent false alarm rate for tornado warnings. Leigh Orf, an atmospheric scientist with the University of Wisconsin-Madison’s Space Science and Engineering Center is on a quest to change that using the most detailed tornado simulations ever produced.

Using a piece of software he developed, Orf has simulating and visualizing fully resolved tornadoes and their parent supercells for a decade. To run these powerful simulations, Orf has used a variety of supercomputers – most recently, Frontera at the Texas Advanced Computing Center (TACC). Frontera delivers 23.5 Linpack petaflops of computing power, placing it 8th on the most recent Top500 list of the world’s most powerful publicly ranked supercomputers. With Frontera, Orf has been able to run simulations at high spatial and temporal resolutions – ten meters and a fifth of a second, respectively.

A simulated multiple-vortex tornado. Image courtesy of Leigh Orf.

“It is only with this level of granularity that some features become evident,” Orf said in an interview with TACC’s Aaron Dubrow. “We need to throw a lot of computational power to get it right and resolve salient features. Ultimately, the goal is prediction, but the truth is, we still don’t understand some basic things about how supercell thunderstorms really work. … It’s really hard to answer questions like, ‘will this supercell that just formed produce a tornado, and if so, will it be especially violent?’”

Orf’s research has, to date, produced a variety of insights into the tornadogenesis process. When studying a deadly tornado event in Oklahoma, for instance, Orf found several characteristic features that might help explain how the tornadoes formed. “In these simulations, there’s a lot of spinning going on that you wouldn’t see with the naked eye,” he said. “That spinning is sometimes in the form of vortex sheets rolling up, or misocyclones, what you might call mini tornadoes, that aren’t quite tornado strength that spin along different boundaries in the storm.” Similarly, his simulations revealed that certain types of currents serve as driving forces for tornado intensity.

Now, with his allocation on Frontera, Orf is looking to re-simulate storms in a variety of conditions to see how minor variable changes might impact the formation or intensity of tornadoes. “Very small changes early on in the simulation can lead to very big changes in the simulation down the road,” he said. “This is an intrinsic predictability issue in our field. We’re doing some of the frontier work to try to tease out these variables.”

Shaking strength of the simulated 7.0 earthquake. Image courtesy of LLNL.

While Orf is looking to the sky, a team at Lawrence Livermore National Laboratory (LLNL) is looking to the ground. Using code developed at LLNL, the researchers simulated a magnitude 7.0 earthquake on the Hayward Fault, which runs along the San Francisco Bay Area. The new simulations ran at double the resolution of previous iterations, capturing seismic waves as short as 50 meters across the entire fault zone. These simulations, too, required extraordinary computing power: in this case, LLNL’s Sierra system, which delivers 94.6 Linpack petaflops, placing it third on the most recent Top500 list. The Sierra-based simulations were run during Sierra’s open science period in 2018, before it switched to classified work. The team also made use of LLNL’s Lassen system (an unclassified machine with similar architecture to Sierra), which delivers 18.2 Linpack petaflops and placed 14th. 

“The [Institutional Center of Excellence] prepared computer codes at LLNL to run efficiently on Sierra and Lassen prior to their arrival so they could immediately take advantage of those capabilities when they came online, and this earthquake simulation and other science-based projects are achieving exactly what they were meant to do,” said Chris Clouse, associate program director for computational physics at LLNL, in an interview with LLNL’s Anne Stark.

“We used a recently developed empirical model to correct ground motions for the effects of soft soils not included in the Sierra calculations,” said Arthur Rodgers, a seismologist at LLNL. “These improved the realism of the simulated shaking intensities and bring the results in closer agreement with expected values.”

Now, with hurricane season beginning, eyes are turning to the wide range of weather and climate supercomputer centers – many of which have recently received large installations or investments – to see if the 2020 hurricane season can be more accurately anticipated.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire