Intel Connects the (Quantum) Dots in Accelerating Quantum Computing Effort

By John Russell

August 19, 2020

Quantum computing made its debut at Hot Chips this year with a lengthy ‘tutorial’ session on Sunday including talks from Google, IBM, Intel, Microsoft, and Facebook. What that portends for quantum computing’s closeness to practical application is still hazy – certainly there are no hot quantum chips to buy yet – but it’s clear there’s tangible progress and growing momentum behind quantum computing. There are now POC devices and programs for superconducting, ion trap, silicon spin, cold atom, and photonic qubits. The presenting companies and many more players have funding, real projects, and government-backed enthusiasm to make quantum computing a reality.

Quantum computing ideas and development seem to be percolating everywhere.

Much of what was presented is familiar to regular observers of the QC development community where work on semiconductor-based superconducting qubits (IBM, Google, D-Wave) and recently ion trap technologies (IonQ and Honeywell) have received the bulk of attention. Session moderator Misha Smelyanskiy of Facebook (director of AI) and Jim Martinis (UCSB and formerly Google), both did solid jobs broadly covering quantum computing and progress to date.

Jim Clarke, Intel

One of the more interesting talks was by Jim Clarke on Intel’s silicon spin qubit technology which is based on silicon quantum dots. On balance, Intel has been less active than many in joining the quantum clamor. Many challenges face quantum computing, not least the ability to scale up (number of qubits) from today’s small systems. One hurdle is the requirement for most qubit technologies to operate in near-zero (Kelvin) environments. Just squeezing the required number of control cables into dilution refrigerators is daunting and system size limiting.

Intel believes it has a better way. Tiny CMOS-based silicon quantum dots and cold-hardened control chips, argues Intel, present a much more efficient path for scaling and ultimately practical quantum computing. Not surprisingly the manufacturing expertise to tackle those challenges is an Intel strong suit. Clarke’s pitch boils down to three elements 1) proven scalable manufacturing, 2) promising early spin qubit performance (coherency times), and 3) newly developed cryo-electronic control chips (not unwieldy coax cables).

Here’s Clarke neat recap of the state of affairs.

“Today, the system sizes that we’re operating are between a few qubits and perhaps up to 50 qubits. This is really at the proof of concept stage of this technology where the computational efficiency of these quantum computers perhaps succeeds for some contrived applications of a supercomputer. More importantly, it becomes a testbed for an overall quantum system. Only when you begin to get to 1000 qubits – let’s say 20 to 50 times more than we have today – would you be able to do something perhaps more useful, [with] limited error correction, [on] chemistry and materials, design, and optimization. It’s probably going to take millions of qubits to do something on the commercial scale, something that would change your life or mine, with fault tolerance operation [for] cryptography and machine learning. We have a ways to go,” said Clarke.

“There are many different qubits out there. The types of systems that are available are superconducting loops. This is basically a nonlinear LC oscillator circuit that creates two artificial levels that that are accessible by microwave frequencies and become the zero or one state of your system. These are the technologies favored by companies such as Google, IBM Rigetti and D-wave. You have the trapped ion technology where you have a laser controlling the excited state of a metal ion. This is very similar to an atomic clock, and this is a technology favored by Honeywell and IonQ.”

There are also topological qubits (Microsoft) where the topological state of the material should prevent errors from occurring as they do in other systems, but as Clarke pointed out, “To date, the topological qubits are a bit more theoretical than reality.”

So what is the silicon quantum dots technology favored by Intel? It’s not like Intel hasn’t explored superconducting qubits. You may recall in 2018 that Intel CEO Brian Krzanich talked about a 49-qubit superconducting quantum test chip, Tangle Lake, in his CES keynote. Tangle Lake measured 3in x 3in on a side and was developed with Intel partner QuTech.

At the time, Mike Mayberry, corporate vice president and managing director of Intel Labs, said, “In the quest to deliver a commercially viable quantum computing system, it’s anyone’s game. We expect it will be five to seven years before the industry gets to tackling engineering-scale problems, and it will likely require 1 million or more qubits to achieve commercial relevance.”

Mayberry’s comments still sound right.

Intel pivoted to silicon quantum dots and spin based qubits for many reasons. For starters, silicon quantum dots look a lot like a transistor. It has a source, gate and drain and when you apply a potential, current flows through the device. Intel has developed technology to finely control the number of electrons flowing. Essentially, Intel fabs an array of transistors and creates pockets of electrons under several of the gates that are nearby (see slide). “I can tune these down by tuning the potential down to just a single or just a few electrons. I adjust the voltages on my transistor gates so that there’s only a single electron. This is done with an electromagnet inside one of the dilution refrigerators,” said Clarke.

“These individual electrons can either have a spin up or spin down that’s separated by a particular energy. The spins of the electrons, up or down, become the zero and one of our qubit. That’s how we encode our information and a spin qubit in silicon.”

The Intel quantum group is located at the Hillsboro, Oregon, site which houses Intel’s advanced manufacturing and the group taps into that infrastructure. “What you see on the left is a 300-millimeter wafer that’s been fabricated on a dedicated pilot line to produce quantum dots and qubits. Within these wafers we produce each die if you will, [and] each chip has multiple test structures. Instead of normal silicon we use silicon28 isotopically pure form of silicon. Another isotope of silicon, silicon29, which is commonly found, causes our qubits to lose their information and affects the fragility of our qubits,” Clarke said.

Intel uses its FinFET technology to make the silicon quantum dot qubits and the early indications are the devices perform well. “We put the electron into the spin up position. We wait a period of time and we see what fraction of the electrons that we test are still in that spin up state. This is done many times, all at the single electron level, so this is a series of experiments. We watch how the energy of those electrons is lost. How long does it take before we go from a spin up electron to a randomized sea of electrons of spin up or spin down random orientation? This is known as the T1 energy decay rate,” he described.

T1 times are on the order of about a second which is impressive according to Clarke.

“Now that we can make a single electron device, let’s do something useful with that single electron. This is where we [make] a qubit. On the top layer of our device we have a microwave ESR line. By applying a microwave to that single electron, we can control whether that electron is in the up state or down state. Under some conditions, we can get coherence time of various types such as CPMG, as long as milliseconds,” he said.

“Today we’re studying a seven-gate device. We’re essentially crawling (slide below). We have relatively few numbers of gates that we’re trying to study. Within the same mask that I showed you today, the same product, we have a 55-gate device. This is essentially leading to walking on larger devices on the same chip. And we have published ideas on extensible arrays of much larger. And so this would be the equivalent of running. But it’s not that easy,” he said.

Like their superconducting brethren, silicon quantum dots still need to operate in highly-controlled cold environments which means dilution refrigerators and squeezing a tangle of control wires inside. Intel tackled this problem by developing a mixed signal controller chip that can operate in cold temperatures.

“If we were to have thousands of qubits, we would need several thousands of coax lines. It’s hard to imagine one of those fridges having several thousand wires going into it. There just isn’t enough space. We have developed a chip called Horse Ridge [named for the coldest place in Oregon] that we’re using to control our qubits. This is an integrated qubit control chip that operates at low temperatures. It’s a mixed signal RFID chip and we’ve used our expertise in quantum core design to develop this. We take into account our packaging and interconnect performance at low temperatures. All of this is using the Intel 22 nanometer FinFET technology, which is the best RF technology on the face of the earth.

“You can see at the very bottom of the image (below) on the right we have our qubit chip, and then a slightly higher part within the refrigerator, we have a control chip mounted on top of a PCB and installed in the fridge. And Horse Ridge has drive capability for the qubits,” said Clarke.

Interestingly, Clarke said Horse Ridge can support both superconducting and spin qubits that allow frequency multiplexing and arbitrary pulse generation. “The key objectives are shown here (slide), we have to prove that the chip works at four Kelvin. We have to make sure it doesn’t fall apart at low temperature. We have to demonstrate that it can control qubits and that it’s in fact matched to room temperature operating equipment that you might buy off the shelf,” he said.

So far, “we’ve shown that we can match the Horse Ridge performance to room temperature electronics, and we’ve executed two-qubit algorithms. Demonstrating frequency multiplexing. That’s something that’s still in progress, but we’re well on our way,” said Clarke.

“Let me summarize. Quantum is going to change the world, but it’s going to require a large system, perhaps millions of qubits. Spin qubits are built on the same technology that transistors are built on today, and they have compelling performance. Finally, quantum computing won’t happen with brute force control or brute force wiring. We have to be elegant about that, and by tapping into our conventional computing capability with something like Horse Ridge (control chip able to work in cryo-environment), we feel that we’re going to get there. These are the areas that Intel is working,” said Clarke.

Intel’s quantum gambit is fascinating. Leveraging CMOS technology for scale would be a huge leap forward, if its silicon spin qubits works reasonably well and if effective cyro-controller chips can be developed. Indeed, selling cryo-controller chips might become a viable business on its own.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UT Dallas Grows HPC Storage Footprint for Animation and Game Development

October 28, 2020

Computer-generated animation and video game development are extraordinarily computationally intensive fields, with studios often requiring large server farms with hundreds of terabytes – or even petabytes – of storag Read more…

By Staff report

Frame by Frame, Supercomputing Reveals the Forms of the Coronavirus

October 27, 2020

From the start of the pandemic, supercomputing research has been targeting one particular protein of the coronavirus: the notorious “S” or “spike” protein, which allows the virus to pry its way into human cells a Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. The acquisition helps AMD keep pace during a time of consolida Read more…

By John Russell

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. Th Read more…

By John Russell

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This