Building the Quantum Stack for the NISQ Era

By Tim Hirzel

August 24, 2020

In October 2019, Google unveiled the first proof of quantum supremacy, demonstrating that a quantum computer could solve certain mathematical problems faster than a classical computer.

In March 2020, Honeywell announced that it would launch the first commercial quantum computer and in June announced the creation of the most powerful quantum computer yet. Coming in fast succession, these milestones indicate how far we’ve come since this technology was first postulated by Richard Feynman back in the 1980s.

In the next three to five years, such milestones will be reached with increasing frequency. Eventually, due to the inherent principles of the technology itself, the performance of quantum hardware will accelerate exponentially.

While future developments will unleash the full power of quantum computing, the reality is we can already harness some of that power today through the innovative orchestration of classical computers and existing quantum hardware.

John Preskill, professor of theoretical physics at the California Institute of Technology, called this existing hardware “noisy intermediate scale quantum.” Preskill called the technology “noisy” because we cannot yet adequately control the qubits – the “bits” used in quantum computing – however physically implemented. In the absence of greater control, the error rates involved when executing an algorithm across quantum gates – the logical circuits operating on a set of qubits – can be persistent and relatively high.

Preskill called the technology “intermediate scale” due to the number of qubits currently available on quantum devices. To achieve sustainable quantum supremacy, researchers estimate that we will need machines running between 208 and 420 qubits, depending on the type of circuit used. To put that in perspective, the most powerful machine unveiled by IBM boasts 53 qubits. Honeywell’s latest machine only has 6. This machine, however, has a stated “quantum volume” (a standard for measuring quantum power introduced by IBM) of 64, twice that of its closest competitor.

The question is: For organizations looking to build quantum computing capabilities in the NISQ era, what does the NISQ stack look like? In the following article, we will describe various aspects of this stack and provide a high-level overview of its implementation.

Hybrid by Necessity

Given the limitations of NISQ technology, the quantum stack will be hybrid by necessity, consisting primarily of classical computing components. These classical elements will handle a range of tasks from data preparation and parameter selection to post-processing and data analysis. The quantum elements of the workflow will be limited to very specific—albeit powerful—acceleration or co-processing roles for particular problems.

For the foreseeable future, quantum devices themselves will tend to be fairly specialized, with different types of devices (superconducting, trapped ion, photonic, and so on) particularly well-suited for different types of problems. The challenges posed by the hybrid nature of the stack require the implementation and management of workflows for the effective orchestration of the various components.

Future Compatible

Quantum technology will only continue to evolve, so the NISQ stack requires built-in flexibility to adapt to future innovation. The algorithms and IP developed today must both maximize the capabilities of NISQ and quantum-inspired devices while remaining open to emerging technologies, devices and approaches.

The quantum tools that industry and academia use today must be architected in a way that anticipates and accounts for this inevitable evolution. Creating high level workflows that can implement quantum algorithms on any hardware type represents one specific way to ensure future compatibility.

Replicable, Modular and Flexible at Scale

Working with quantum computing technology today involves trial and error. It is naturally iterative. Algorithms developed in the NISQ era, even those that theoretically can work on the “universal” quantum computers of the future, are heuristic in nature. As researchers and others refine their algorithms and workflows over time, they need to be able to replicate their current efforts on new technology and to experiment with evolving approaches.

The NISQ stack must support this iterative experimentation. Containerization has emerged as one way to provide flexibility, modularity and scalability, while also allowing plug-and-play options on backend devices (both classical and quantum).

The Importance of Workflow Management

The need to orchestrate both classical and quantum capabilities while accounting for their inherent differences benefit from containerization. The execution and composition of containers can be managed with workflows. This in turn calls for a comprehensive workflow management system to efficiently coordinate tasks and processes across the NISQ stack.

Isomorphic with the stack itself, these workflows must be future compatible (i.e., able to run across emerging hardware configurations). They must also be modular to facilitate experimentation and allow for ongoing optimization. Zapata Computing built Orquestra, a unified quantum operation environment, expressly for managing quantum workflows.

Visualizing the NISQ Stack

When thinking about the NISQ stack, it’s best to separate it into three separate functions.

On the front end are tools needed to create workflows along with the frameworks and libraries required to build quantum circuits (Cirq, Qiskit, PyQuill, etc.). Here you will also find specialized tools focused on the problem you are trying to solve (machine learning, optimization, modeling, chemical and molecular dynamics, and so on).

This part of the NISQ stack will be connected to your local infrastructure (e.g., your laptop for writing tasks and workflows in an editor, as well as managing workflows from your command line) through your workflow lifecycle management tool.

The next layer is where the hardware lives. This layer can include any of the existing quantum implementations – superconducting qubits, photonic qubits, ion traps – as well as quantum annealers. You will also find dedicated classical hardware here along with classically-based quantum circuit simulators.

Access to quantum hardware today is primarily cloud-based. For this reason, you will want to have containerized execution tools that connect to the relevant cloud environment. Your workflows will execute across this layer.

Finally, you need an analytics or data layer to analyze intermediate and final data from the workflows you run. This data will in turn inform iterations and replication of your workflows at scale.

From a workflow perspective, this layer will first and foremost house the data aggregation and correlation services responsible for collecting and organizing all the data created from a workflow run. It will also house your analytics tools, most commonly Jupyter Notebooks running Pandas in Python.

The last component consists of plotting and visualization tools: Matplotlib, Tableau or even Excel.

For the purposes of data management, this layer will also need to connect to a database, be it cloud-based or on prem.

Workflow Management: The Continuous Thread

While one might assume the quantum stack will change dramatically as quantum devices evolve, that is probably not the case. The quantum stack will be a quantum/classical hybrid for the foreseeable future. Existing technologies, from analytics and data visualization tools to high-performance computers, are and will continue to be perfectly suited to handle significant aspects of the quantum computing process.

Precisely because of its hybrid nature, the quantum stack will always require workflow management/orchestration. This layer will provide the necessary level of abstraction so that users can repeat, repurpose, and scale quantum processes while employing different quantum frameworks, languages, or hardware types. Given the central role that workflow management plays in the NISQ stack and beyond, it’s fair to say that it will serve as the fundamental enabler of the coming quantum revolution.

About the Author 

Tim Hirzel has a BA in Computer Science from Harvard University and an MS from MIT’s Media Lab. He brings extensive experience in managing teams working on performing data science, machine learning, quantum chemistry, and device simulation. Since 2005, Tim has been a software engineer and architect in science-based technology startups. Today he is focused on delivering a best in class quantum computing platform for Zapata and its customers.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only to be ritualistically dismantled when the image is finished. Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Reuters’ reported earlier this week that Alibaba “cut a Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Feather (BoF) session: With Great Power Comes Great Responsib Read more…

Grace Hopper’s Big Debut in AWS Cloud While Graviton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Graviton4 can be found on our sister site Datanami. Amazon Web Services will soon be home to a new Nvidia-built supercomputer that Read more…

Give a Little (on Tuesday), Get a Lot

November 28, 2023

HPC is built on open source. While building HPC systems with "open plumbing" has enormous advantages, there can also be some challenges. As illustrated in the classic XKCD comic, the entire dependency tree of many usefu Read more…

AWS Solution Channel

Deploying AI/ML at the Edge with Omniflow’s Sustainable Smart Lamppost, NVIDIA, and AWS

Imagine a world where a lamppost does more than just illuminate streets; it actively contributes to a smarter, safer, and more sustainable community. Using Amazon Web Services (AWS) and NVIDIA technologies, Omniflow is turning this vision into a reality. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

re:Invent 2023: AWS Talks a Little Quantum, Showcases Error Correction Progress

November 28, 2023

Quantum computing held sway in the last few minutes of AWS senior vice president Peter DeSantis’ keynote yesterday at the AWS re:Invent 2023 conference, being held in Las Vegas this week. While scarce on details, DeSan Read more…

The Annual SCinet Mandala

November 30, 2023

Perhaps you have seen images of Tibetan Buddhists creating beautiful and intricate images with colored sand. These sand mandalas can take weeks to create, only Read more…

SC23: The Ethics of Supercomputing

November 29, 2023

Why should HPC practitioners care about ethics? And, what are our ethics in HPC? These questions were central to a lively discussion at the SC23 Birds-of-a-Fe Read more…

Grace Hopper’s Big Debut in AWS Cloud While Graviton4 Launches

November 29, 2023

Editors Note: Additional Coverage of the AWS-Nvidia 65 Exaflop ‘Ultra-Cluster’ and Graviton4 can be found on our sister site Datanami. Amazon Web Service Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

SCREAM wins Gordon Bell Climate Prize at SC23

November 21, 2023

The first Gordon Bell Prize for Climate Modeling was presented at SC23 in Denver. The award went to a team led by Sandia National Laboratories that had develope Read more…

SC23 BOF: Inclusivity Progress and Challenges

November 21, 2023

New to SC23 was a series of talks on Inclusivity topics. Sponsored by the Inclusivity Committee and open to all conference attendees, these 90-minute birds-of-a Read more…

Supercomputing 2023: Odds and Ends from the Show

November 20, 2023

This year's fantastic Supercomputing 2023 was back in full form. Attendees seemed to be glad that the show was back in Denver, which was a preferred destination Read more…

Material Simulation with Quantum Accuracy Wins 2023 ACM Gordon Bell Prize

November 20, 2023

Accurately calculating interactions among electrons has been a significant obstacle to reliable material exploration and design through computer modeling. Recen Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

SC23 Booth Videos

AMD @ SC23
AWS @ SC23
Altair @ SC23
CoolIT @ SC23
Cornelis Networks @ SC23
CoreHive @ SC23
DDC @ SC23
HPE @ SC23 with Justin Hotard
HPE @ SC23 with Trish Damkroger
Intel @ SC23
Intelligent Light @ SC23
Lenovo @ SC23
Penguin Solutions @ SC23
QCT Intel @ SC23
Tyan AMD @ SC23
Tyan Intel @ SC23
HPCwire LIVE from SC23 Playlist

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire