Building the Quantum Stack for the NISQ Era

By Tim Hirzel

August 24, 2020

In October 2019, Google unveiled the first proof of quantum supremacy, demonstrating that a quantum computer could solve certain mathematical problems faster than a classical computer.

In March 2020, Honeywell announced that it would launch the first commercial quantum computer and in June announced the creation of the most powerful quantum computer yet. Coming in fast succession, these milestones indicate how far we’ve come since this technology was first postulated by Richard Feynman back in the 1980s.

In the next three to five years, such milestones will be reached with increasing frequency. Eventually, due to the inherent principles of the technology itself, the performance of quantum hardware will accelerate exponentially.

While future developments will unleash the full power of quantum computing, the reality is we can already harness some of that power today through the innovative orchestration of classical computers and existing quantum hardware.

John Preskill, professor of theoretical physics at the California Institute of Technology, called this existing hardware “noisy intermediate scale quantum.” Preskill called the technology “noisy” because we cannot yet adequately control the qubits – the “bits” used in quantum computing – however physically implemented. In the absence of greater control, the error rates involved when executing an algorithm across quantum gates – the logical circuits operating on a set of qubits – can be persistent and relatively high.

Preskill called the technology “intermediate scale” due to the number of qubits currently available on quantum devices. To achieve sustainable quantum supremacy, researchers estimate that we will need machines running between 208 and 420 qubits, depending on the type of circuit used. To put that in perspective, the most powerful machine unveiled by IBM boasts 53 qubits. Honeywell’s latest machine only has 6. This machine, however, has a stated “quantum volume” (a standard for measuring quantum power introduced by IBM) of 64, twice that of its closest competitor.

The question is: For organizations looking to build quantum computing capabilities in the NISQ era, what does the NISQ stack look like? In the following article, we will describe various aspects of this stack and provide a high-level overview of its implementation.

Hybrid by Necessity

Given the limitations of NISQ technology, the quantum stack will be hybrid by necessity, consisting primarily of classical computing components. These classical elements will handle a range of tasks from data preparation and parameter selection to post-processing and data analysis. The quantum elements of the workflow will be limited to very specific—albeit powerful—acceleration or co-processing roles for particular problems.

For the foreseeable future, quantum devices themselves will tend to be fairly specialized, with different types of devices (superconducting, trapped ion, photonic, and so on) particularly well-suited for different types of problems. The challenges posed by the hybrid nature of the stack require the implementation and management of workflows for the effective orchestration of the various components.

Future Compatible

Quantum technology will only continue to evolve, so the NISQ stack requires built-in flexibility to adapt to future innovation. The algorithms and IP developed today must both maximize the capabilities of NISQ and quantum-inspired devices while remaining open to emerging technologies, devices and approaches.

The quantum tools that industry and academia use today must be architected in a way that anticipates and accounts for this inevitable evolution. Creating high level workflows that can implement quantum algorithms on any hardware type represents one specific way to ensure future compatibility.

Replicable, Modular and Flexible at Scale

Working with quantum computing technology today involves trial and error. It is naturally iterative. Algorithms developed in the NISQ era, even those that theoretically can work on the “universal” quantum computers of the future, are heuristic in nature. As researchers and others refine their algorithms and workflows over time, they need to be able to replicate their current efforts on new technology and to experiment with evolving approaches.

The NISQ stack must support this iterative experimentation. Containerization has emerged as one way to provide flexibility, modularity and scalability, while also allowing plug-and-play options on backend devices (both classical and quantum).

The Importance of Workflow Management

The need to orchestrate both classical and quantum capabilities while accounting for their inherent differences benefit from containerization. The execution and composition of containers can be managed with workflows. This in turn calls for a comprehensive workflow management system to efficiently coordinate tasks and processes across the NISQ stack.

Isomorphic with the stack itself, these workflows must be future compatible (i.e., able to run across emerging hardware configurations). They must also be modular to facilitate experimentation and allow for ongoing optimization. Zapata Computing built Orquestra, a unified quantum operation environment, expressly for managing quantum workflows.

Visualizing the NISQ Stack

When thinking about the NISQ stack, it’s best to separate it into three separate functions.

On the front end are tools needed to create workflows along with the frameworks and libraries required to build quantum circuits (Cirq, Qiskit, PyQuill, etc.). Here you will also find specialized tools focused on the problem you are trying to solve (machine learning, optimization, modeling, chemical and molecular dynamics, and so on).

This part of the NISQ stack will be connected to your local infrastructure (e.g., your laptop for writing tasks and workflows in an editor, as well as managing workflows from your command line) through your workflow lifecycle management tool.

The next layer is where the hardware lives. This layer can include any of the existing quantum implementations – superconducting qubits, photonic qubits, ion traps – as well as quantum annealers. You will also find dedicated classical hardware here along with classically-based quantum circuit simulators.

Access to quantum hardware today is primarily cloud-based. For this reason, you will want to have containerized execution tools that connect to the relevant cloud environment. Your workflows will execute across this layer.

Finally, you need an analytics or data layer to analyze intermediate and final data from the workflows you run. This data will in turn inform iterations and replication of your workflows at scale.

From a workflow perspective, this layer will first and foremost house the data aggregation and correlation services responsible for collecting and organizing all the data created from a workflow run. It will also house your analytics tools, most commonly Jupyter Notebooks running Pandas in Python.

The last component consists of plotting and visualization tools: Matplotlib, Tableau or even Excel.

For the purposes of data management, this layer will also need to connect to a database, be it cloud-based or on prem.

Workflow Management: The Continuous Thread

While one might assume the quantum stack will change dramatically as quantum devices evolve, that is probably not the case. The quantum stack will be a quantum/classical hybrid for the foreseeable future. Existing technologies, from analytics and data visualization tools to high-performance computers, are and will continue to be perfectly suited to handle significant aspects of the quantum computing process.

Precisely because of its hybrid nature, the quantum stack will always require workflow management/orchestration. This layer will provide the necessary level of abstraction so that users can repeat, repurpose, and scale quantum processes while employing different quantum frameworks, languages, or hardware types. Given the central role that workflow management plays in the NISQ stack and beyond, it’s fair to say that it will serve as the fundamental enabler of the coming quantum revolution.

About the Author 

Tim Hirzel has a BA in Computer Science from Harvard University and an MS from MIT’s Media Lab. He brings extensive experience in managing teams working on performing data science, machine learning, quantum chemistry, and device simulation. Since 2005, Tim has been a software engineer and architect in science-based technology startups. Today he is focused on delivering a best in class quantum computing platform for Zapata and its customers.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire