David Patterson Kicks Off AI Hardware Summit Championing Domain Specific Chips

By John Russell

September 30, 2020

The 2020 AI Hardware Summit kicked off yesterday with long-time computer luminary David Patterson digging into all things TPU and extolling on how they outrun GPUs for AI needs. After presenting data in which the TPUv3 bested Nvidia’s V100, he was asked about Google’s forthcoming TPUv4 versus Nvidia A100. Expect the same kind of advantage for TPUv4, he suggested.

With that the AI Hardware Summit was off and running.

It’s a virtual conference this year with two days this week and two more next week (link to conference). Other highlights on opening day included seasoned AI watcher Karl Freund’s (senior analyst, Moor Insights and Strategy) spotlight on 2019 and 2020 accelerator trends; startups SambaNova and Groq providing glimpses into their systems; and a pair of fascinating panels – one on AI use for chip design and another on AI compiler development. There was actually a good deal more going on and it’s best to check out the agenda.

Patterson, of course, is a familiar name in computing. He’s a UC Berkeley professor, a Google distinguished engineer, and the RISC-V Foundation Vice-Chair. His work at Google on TPU development is well-known.

David Patterson

As he recalled, “Google was one of the first people to get excited about both deep neural networks, and then domain specific architectures. In 2013, they calculated that if 100 million users started doing deep neural networks, three minutes a day on CPUs, they would have to double the size of the data center. Not only would that be very expensive, that would take forever to build twice as many data centers in the cloud. So they set an emergency project whose goal was to make a factor of 10 improvement over existing CPUs and GPUs.”

To some extent the rest is history as Google developed its tensor processor unit focusing on the AI needs of Google’s workload.

“Why was it successful? First of all, it an amazing number of arithmetic units. It has 256 by 256, arithmetic units, 64,000 multiply accumulators. Secondly, that they were doing work on eight-bit integer data rather than 32-bit floating data so it can be more energy efficient and take less memory capacity and be faster. And because it was domain specific, it dropped a lot of the general-purpose features that dominate CPUs and GPUs like caches and branch predictors. This saves area and energy in lets the transistors get reused. The legacy of TPU v1 is not only its technical excellence, but the impact it made,” said Patterson.

Lots of interesting choices were made along the way, for example how many cores should the new device have. “Where we went to [for] advice is Seymour Cray…and when we asked him, he said, “If you’re plowing a field, what would you rather use to strong oxen or 1024 chickens? So we went with two strong oxen so the TPUv2 has two cores per chip so it wouldn’t have a slower clock cycle.”

In addition to presenting more detail around the TPUv1-though-TPUv3 architecture, Patterson’s talk reinforced the idea designing domain specific chips (and tools) for AI comprise an increasingly formidable approach, likening the TPU’s success to  a galvanizing proof point that’s now launching “1000 chips”.

“Let me conclude the slowing of Moore’s law means AI needs to tailor machines to be able to continue to make improvements in training and efforts. [A]ll the decisions you want to make are easier when it’s just for one domain rather than for general purpose. Despite using older technology and smaller chips, Google’s TPU v2 and v3 demonstrated a 50x performance improvement per watt versus general purpose supercomputers. I think the 2020s is a Cambrian era with all kinds of innovation, and exotic species, but which ones are going to flourish?”

Two such companies hoping to flourish are SambaNova and Groq.

SambaNova cofounder and CTO Kunle Olukotun walked briefly through its reconfigurable data flow architecture. Here’s brief excerpt from Olukotun’s remarks:

“We define a reconfigurable data flow architecture that’s optimized for data flow problems. So it takes these hierarchical pal (parallel) patterns and maps them to an architecture so they can be executed very efficiently. This is a reconfigurable architecture composed of reconfigurable compute, reconfigurable memory, and communication primitives that makes it very efficient to execute these sorts of data flow problems.

“The first incarnation of this reconfigurable Dataflow architecture is the Cardinal SN10 reconfigurable data flow unit (RDU). This is implemented in TSMC seven nanometer technology and 40 billion transistors. Over 50 kilometers of wire provide all the interconnect between the different components on the chip. It provides hundreds of teraflops of compute capability, and hundreds of megabytes of memory on chip. Just as importantly, it has different direct interfaces to terabytes of memory off chip. We’ve combined these RDU chips into systems that provide scalable performance for both training and inference. We call them data scale systems,” said Olukotun.

“When mapping data flow applications to the data scale system, a critical thing is to delicately balance computation and communication. If you look at conventional architectures, they allow you to program the computation, but they don’t allow you to program the communication and this is critical for getting efficient data flow. However, with reconfigurable dataflow, we are able to program the communication and the data flow, so that we can get a 10x improvement in performance on some applications. And we can enable applications that are not possible with current accelerator technology available in the form of GPUs.”

“We don’t expect the programmer to do this manually, we have a set of software called SambaFlow, which provides the capability to map these models very efficiently to our architecture. The idea is that the programmer can start either in one of the frameworks, PyTorch or TensorFlow, or they can provide their own graph of custom operations. If you start in one of the frameworks, then you’ll use a standard set of ML operations, and here we want to optimize the graph so that we can take advantage of both model parallelism and data parallelism. Then given a graph of operators, either custom operators or standard ML operators, we want to optimize the data flow in the graph. And this is done by number of different optimizations, such as tiling to improve the memory performance, exploiting parallelism within the operators, and then some very specific optimizations that that are specific to our architecture, such as streaming and nested pipelining.”

Groq cofounder and CEO Jonathan Ross gave a somewhat less technical presentation, noting recent key funding milestones, the company’s expanding portfolio, and use cases. It’s Tensor Streaming processor is another AI chip that seeks to reduce some of the overhead (instructions) required to use general purpose microprocessors by physically moving and reorganizing functional elements (e.g. with needed memory and support located nearby).

Groq’s says its TSP is capable of 18,900 IPS (inferences per second) on ResNet-50 v2 at batch size one and says it the fastest commercially available AI/ML accelerator, with a responsiveness measured in hundredths of a millisecond.

Here’s a brief portion of the description of the architecture excerpted from a paper presented at IEEE’s 2020 International Symposium on Computer Architecture (link to paper):

“To understand the novelty of our approach, consider the chip organization shown in Figure 1(a). In a conventional chip multiprocessor (CMP) each “tile” is an independent core which is interconnected using the on-chip network to exchange data between cores. Instruction execution is carried out over several stages: 1) instruction fetch (IF), 2) instruction decode (ID), 3) execution on ALUs (EX), 4) memory access (MEM), and 5) writeback (WB) to update the results in the GPRs. In contrast from conventional multicore, where each tile is a heterogeneous collection of functional units but globally homogeneous, the TSP inverts that and we have local functional homogeneity but chip-wide (global) heterogeneity.

“The TSP reorganizes the homogeneous two-dimensional mesh of cores in Figure 1(a) into the functionally sliced microarchitecture shown in Figure 1(b). In this approach, each tile implements a specific function and is stacked vertically into a “slice” in the Y-dimension of the 2D on-chip mesh. We disaggregate the basic elements of a core in Figure 1(a) per their respective functions: instruction control and dispatch (ICU), memory (MEM), integer (INT) arithmetic, float point (FPU) arithmetic, and network (NET) interface, as shown by the slice labels at the top of Figure 1(b).

“In this organization, each functional slice is independently controlled by a sequence of instructions specific to its on-chip role. For instance, the MEM slices support Read but not Add or Multiply, which are only in arithmetic functional slices (the VXM and MXM slices).”

Ross said the company was now shipping its latest Groq card, Groq node and Groq ware SDK solutions to customers worldwide. “We’re shipping to our customers both as individual PCIe cards and systems with eight cards each, and there’s even more on the roadmap to come,” said Ross.

As noted earlier there were many more activities in the first day. Here’s a link to coverage of the panel on AI use in chip design appearing in HPCwire‘s sister pub, EnterpriseAI.

Link to AI Hardware Summit: https://www.aihardwaresummit.com/events/ai-hardware-summit-2020

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21 Keynote: Internet Pioneer Vint Cerf on Shakespeare, Chatbots, and Being Human

November 17, 2021

Unlike the deep technical dives of many SC keynotes, Internet pioneer Vint Cerf steered clear of the trenches and took leisurely stroll through a range of human-machine interactions, touching on ML’s growing capabilities while noting potholes to be avoided if possible. Cerf, of course, is co-designer with Bob Kahn of the TCP/IP protocols and architecture of the internet. He’s heralded... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire