HAL, Summit and the Songs of Black Holes

By Oliver Peckham

October 6, 2020

The idea of gravitational waves rippling through the fabric of spacetime had been proposed for nearly a century before lightless waves from a collision between two black holes finally appeared on detectors at the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2015. Since then, the astrophysics community has been racing to identify more gravitational waves, better understand them and use the resulting data to make inferences about other elements of the universe. Now, a team from the National Center for Supercomputing Applications (NCSA) is using supercomputers to train neural networks to understand gravitational waves at a fraction of the computational cost.

At NCSA, Dr. Eliu Huerta leads the Gravity Group and the Center for Artificial Intelligence Innovation. Huerta and his colleagues have spent the last several years using innovative techniques to process the massive amount of data that is produced by each of LIGO’s fifty-plus gravitational wave observations since 2015.

The songs of black holes

“We have been exploring the use of AI to study black hole noises,” Huerta said in an interview with HPCwire. “You can think of these as songs or music that are very contaminated by noise. The question that we have now is: … what can we learn from these signals? One of the big things is where they come from – were they originated by the explosion of a star … or are these black holes formed by mergers with other black holes? And one way to figure this out is by measuring how fast they rotate.”

Scientific visualization of the collision of two black holes, numerically simulated by the open source, numerical relativity, community software, the Einstein Toolkit. Video courtesy of Roland Haas and Eliu Huerta.

“This is a computational challenge, to study this parameter,” he continued. “You … need a ton of waveforms to describe different scenarios, like ‘the two black holes have the same mass,’ ‘one is heavier than the other,’ ‘one is rotating faster than the other,’ et cetera. So you need a lot of different modal signals to study this type of scenario. Now, using traditional approaches, this is very computationally intensive. So we started a program in NCSA where we combine AI and high-performance computing for an accelerated type of analysis.”

Since 2017, Huerta’s team had been suggesting that neural networks were ideal for gravitational wave reconstruction due to their scalability and high dimensional parameter space. With the advent of GPU-accelerated computing, Huerta said, “it was a great opportunity to show that our claims were true.”

Testing the limits of scalability

Setting out to train a neural network to determine the properties of merging black holes, the team began their work on HAL, an in-house NCSA cluster with 16 IBM nodes, each equipped with two IBM Power9 CPUs, 256 GB of memory and four Nvidia V100 GPUs. Huerta estimates that the team spent “thousands” of node hours on HAL, eventually scaling their implementation to all 64 of the cluster’s GPUs and training the model over the course of 12 hours.

The Summit supercomputer.

Then, the team took a step up – to Summit, the most powerful supercomputer in the U.S. Summit’s 4,608 IBM nodes each host two IBM Power9 CPUs and six Nvidia Volta GPUs, delivering 148.6 Linpack petaflops of computing power. Receiving around 10,000 node hours of time on Summit through a Director’s Discretionary allocation from Oak Ridge National Laboratory (ORNL), the team began scaling up their work on the massive supercomputer – first on 128 nodes, then on 256 nodes.

“Using over 1,500 GPUs, we finished the training of these neural networks in about one hour,” Huerta said. “Why is this exciting, you may think? Number one: we show that we can effectively use large-scale systems that are tailored for AI research.” Further, he explained, “the models we are proposing are no longer naive models where you just propose an architecture and hope for the best; we now encode domain knowledge into the architecture of the neural nets and how we train them – this is very unique. And on top of that, we are able to constrain how fast the two black holes rotate in a way that no other algorithm can achieve right now.”

The team also demonstrated strong scaling up to 1,024 nodes – which, on Summit, equates to over 6,000 GPUs. Huerta contrasted the workflows: training a neural net across a single hour on Summit, then processing thousands of signals per second using the trained model – versus processing “just a handful” of signals per second with existing algorithms. 

“We accomplished this because our colleagues at Oak Ridge, who are collaborating with IBM and Nvidia experts, were willing to help us set up everything in the machine,” Huerta said. 

The team at ORNL also recognized the suitability of Summit for Huerta’s work. “Summit’s leadership-class capabilities and AI-friendly architecture were ideal for the team to grow and accelerate the exploration,” said Arjun Shankar, leader of the Advanced Data and Workflow Group at the Oak Ridge Leadership Computing Facility (OLCF), in an interview with ORNL’s Katie Bethea.

What’s next

While all of the team’s 10,000 node hours on Summit have been used, Huerta hopes to return to the machine soon. “The next step is to go again and play this game,” he said, “but now including all these additional corrections to the shape of the waveforms.” These waveforms, he explained, were too computationally intensive to include in the initial round of training on Summit, but when added, will increase the dimensionality of the neural net. The neural net is also updated and improved every few hours with new observations from LIGO, which are incorporated via transfer learning without necessitating a full-fledged retraining of the model.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This