Preparing for Exascale Science on Day 1

By Linda Barney

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascale systems. Researchers in the Argonne Leadership Computing Facility’s (ALCF) Aurora Early Science Program (ESP) are blazing the trail toward reaping those benefits from the U.S. Department of Energy’s (DOE) Argonne National Laboratory’s upcoming Aurora exascale supercomputer.

Work by ESP researchers will help to ensure that critical scientific applications are ready for the scale and architecture of the Aurora machine at the time of deployment. There are currently around 250 researchers involved in pre-Aurora ESP research. According to Timothy Williams, Deputy Division Director of Argonne’s Computational Science (CPS) Division and ALCF Co-Manager for the ESP, “As one of the first exascale systems for science in the world, Aurora should deliver siginifcant scientific results, via the Early Science Program.” The ESP is already producing some exciting research and providing insights for system architecture and infrastructure changes slated for the future Aurora supercomputer.

ESP projects represent research so sophisticated that it has outgrown the capability of today’s leadership-class supercomputers—the selected ESP research projects require exascale computational capabilities. Research Principal Investigators (PIs) submit proposals to ALCF describing their research into a specific scientific problem and why it needs to run on an exascale system.

The ESP awards pre-production computing time to research teams working to prepare key applications and software for the Aurora supercomputer. ESP researchers are granted access to hardware and software running on a pre-Aurora configured supercomputer. Argonne’s Theta supercomputer has been extensively used by the ALCF staff and ESP researchers who are preparing for Aurora.

ESP research projects are in the areas of chemistry, physics (high energy physics, fusion energy, cosmology), biosciences (cancer treatment informatics, modeling metastasis, brain connectomics, molecular dynamics of cell membrane transport proteins), engineering (aerodynamics, nuclear reactor coolant, combustion in coal boilers), materials science (functional materials, semi-conductors).

William Tang, professor of astrophysical sciences at Princeton University and principal research physicist with the DOE’s Princeton Plasma Physics Laboratory (PPPL), is leading an ESP project that is one of the more successful efforts in artificial intelligence (AI) for science using pre-exascale systems. His work is focused on using deep learning and exascale computing power to improve the behavior of fusion reactors aiming to produce sustainable clean energy.  Tang’s AI research studies disruptions in confinement devices called tokamaks, which use a powerful magnetic field to confine hot plasma to produce controlled thermonuclear fusion power.

Engineers working with the potential energy source have estimated a window of only 30 milliseconds to control instabilities that can disrupt the energy production process and damage the plasma confinement device. As part of the ESP research, Tang and colleagues use Princeton’s Fusion Recurrent Neural Network (FRNN) code containing convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas. The hope is to increase warning times and work toward heading off disruptions before they happen—keeping the fusion reactions going and producing sustainable clean energy.

Princeton’s Fusion Recurrent Neural Network (FRNN) code uses convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers. (Image: Eliot Feibush, Princeton Plasma Physics Laboratory) . Courtesy Eliot Feibush, Princeton Plasma Physics Laboratory

Another of the ALCF’s notable ESP projects is led by Katrin Heitmann, Deputy Division Director in the High Energy Physics Division at ANL. Heitmann and team perform research using computational cosmology to understand the large-scale behavior of the universe. The research seeks to understand fundamental aspects the cosmos such as dark matter, dark energy and to help understand why the universe’s rate of expansion is accelerating.

The cosmology simulations are carried out using the Hardware/Hybrid Accelerated Cosmology Code (HACC) developed at Argonne, based on an early effort at Los Alamos. HACC is the only cosmology code suite designed for extreme-scale simulations regardless of a supercomputing system’s architecture. The team also uses advanced data science techniques in conjunction with observational data. These techniques have been developed in collaboration with statisticians over a period of many years. More recently, AI methods have been trained using a large set of images generated from cosmological simulations run with HACC.

Moving toward exascale requires not only moving applications to new computer architecture, but it also requires:

  • Code and workflow development
  • Preliminary studies
  • Scaling and optimization

The ESP provides resources and support across these requirements to help research teams prepare their applications for the architecture of the new supercomputer.

The ALCF computational scientists work with ESP researchers to help with troubleshooting, coding, optimizations for parallelization and GPU acceleration, getting the ESP research applications to run in the pre-Aurora environment. Members of the ALCF team also provide support for projects with big data, deep learning (DL), or machine learning (ML) requirements. “Each of the computational scientists working with researchers speaks the language of the relevant domain sciences as well as high-performance computing. In most projects, preliminary studies must be done in advance to verify that the planned exascale research campaigns will succeed,” states Williams.

The ALCF provides a variety of Aurora-related training opportunities including hackathons, workshops, dungeon sessions, and webinars. Some focus around developing, porting, optimizing code with the Aurora SDK and early Intel GPU hardware housed at Argonne’s Joint Laboratory for System Evaluation (JLSE).

Williams indicates, “The ALCF Data Science team (headed by Venkat Vishwanath, ALCF Co-Manager for the ESP program) is establishing a data science supercomputing software environment on Theta, which is the closest environment to what we plan to have on Aurora—it includes the Balsam workflow manager, support for optimized Python functionalities, ML/DL frameworks, parts of the Big Data stack—all optimized for HPC and scientific applications.”

The Exascale Computing Project (ECP) is developing an exascale software stack, including software needed by application developers writing parallel applications targeting diverse exascale architectures. ALCF partners with and participates in the ECP to deploy this stack for Aurora. Software is also being developed for large scale and in-situ visualization and analytics projects.

The future Aurora supercomputer will also include the Intel Distributed Asynchronous Object Storage (DAOS) I/O technology, which alleviates bottlenecks involved with data-intensive workloads. DAOS, supported on Intel Optane persistent memory, enables a software-defined object store built for large-scale, distributed Non-Volatile Memory (NVM). The combination of Intel Optane persistent memory and DAOS, recently set a new world record, soaring to the top of the Virtual Institute for I/O IO-500 list. DAOS will be the primary data storage platform for ESP and production science projects on Aurora—a major advance beyond conventional parallel file systems.

Argonne is a key participant in the development of oneAPI, a unified and scalable programming model to harness the power of diverse computing architectures in the era of HPC/AI convergence. The oneAPI initiative – supported by over 30 major companies and research organizations and growing – will define programming for an increasingly AI-infused, multi-architecture world. The oneAPI unified programming model is designed to simplify development across diverse CPU, GPU, FPGA, and AI architectures

“Through Argonne’s deep investment in science projects using data-intensive and machine-learning methods, Aurora will advance the state of the art for complex scientific workflows at large scale—especially those including experimental/observational data. Aurora will play a big role here,” states Williams.

References

Author: Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training, and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Top500: Fugaku Still on Top; Perlmutter Debuts at #5

June 28, 2021

The 57th Top500, revealed today from the ISC 2021 digital event, showcases many of the same systems as the previous edition, with Fugaku holding its significant lead and only one new entrant in the top 10 cohort: the Perlmutter system at the DOE Lawrence Berkeley National Laboratory enters the list at number five with 65.69 Linpack petaflops. Perlmutter is the largest... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire