Preparing for Exascale Science on Day 1

By Linda Barney

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascale systems. Researchers in the Argonne Leadership Computing Facility’s (ALCF) Aurora Early Science Program (ESP) are blazing the trail toward reaping those benefits from the U.S. Department of Energy’s (DOE) Argonne National Laboratory’s upcoming Aurora exascale supercomputer.

Work by ESP researchers will help to ensure that critical scientific applications are ready for the scale and architecture of the Aurora machine at the time of deployment. There are currently around 250 researchers involved in pre-Aurora ESP research. According to Timothy Williams, Deputy Division Director of Argonne’s Computational Science (CPS) Division and ALCF Co-Manager for the ESP, “As one of the first exascale systems for science in the world, Aurora should deliver siginifcant scientific results, via the Early Science Program.” The ESP is already producing some exciting research and providing insights for system architecture and infrastructure changes slated for the future Aurora supercomputer.

ESP projects represent research so sophisticated that it has outgrown the capability of today’s leadership-class supercomputers—the selected ESP research projects require exascale computational capabilities. Research Principal Investigators (PIs) submit proposals to ALCF describing their research into a specific scientific problem and why it needs to run on an exascale system.

The ESP awards pre-production computing time to research teams working to prepare key applications and software for the Aurora supercomputer. ESP researchers are granted access to hardware and software running on a pre-Aurora configured supercomputer. Argonne’s Theta supercomputer has been extensively used by the ALCF staff and ESP researchers who are preparing for Aurora.

ESP research projects are in the areas of chemistry, physics (high energy physics, fusion energy, cosmology), biosciences (cancer treatment informatics, modeling metastasis, brain connectomics, molecular dynamics of cell membrane transport proteins), engineering (aerodynamics, nuclear reactor coolant, combustion in coal boilers), materials science (functional materials, semi-conductors).

William Tang, professor of astrophysical sciences at Princeton University and principal research physicist with the DOE’s Princeton Plasma Physics Laboratory (PPPL), is leading an ESP project that is one of the more successful efforts in artificial intelligence (AI) for science using pre-exascale systems. His work is focused on using deep learning and exascale computing power to improve the behavior of fusion reactors aiming to produce sustainable clean energy.  Tang’s AI research studies disruptions in confinement devices called tokamaks, which use a powerful magnetic field to confine hot plasma to produce controlled thermonuclear fusion power.

Engineers working with the potential energy source have estimated a window of only 30 milliseconds to control instabilities that can disrupt the energy production process and damage the plasma confinement device. As part of the ESP research, Tang and colleagues use Princeton’s Fusion Recurrent Neural Network (FRNN) code containing convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas. The hope is to increase warning times and work toward heading off disruptions before they happen—keeping the fusion reactions going and producing sustainable clean energy.

Princeton’s Fusion Recurrent Neural Network (FRNN) code uses convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers. (Image: Eliot Feibush, Princeton Plasma Physics Laboratory) . Courtesy Eliot Feibush, Princeton Plasma Physics Laboratory

Another of the ALCF’s notable ESP projects is led by Katrin Heitmann, Deputy Division Director in the High Energy Physics Division at ANL. Heitmann and team perform research using computational cosmology to understand the large-scale behavior of the universe. The research seeks to understand fundamental aspects the cosmos such as dark matter, dark energy and to help understand why the universe’s rate of expansion is accelerating.

The cosmology simulations are carried out using the Hardware/Hybrid Accelerated Cosmology Code (HACC) developed at Argonne, based on an early effort at Los Alamos. HACC is the only cosmology code suite designed for extreme-scale simulations regardless of a supercomputing system’s architecture. The team also uses advanced data science techniques in conjunction with observational data. These techniques have been developed in collaboration with statisticians over a period of many years. More recently, AI methods have been trained using a large set of images generated from cosmological simulations run with HACC.

Moving toward exascale requires not only moving applications to new computer architecture, but it also requires:

  • Code and workflow development
  • Preliminary studies
  • Scaling and optimization

The ESP provides resources and support across these requirements to help research teams prepare their applications for the architecture of the new supercomputer.

The ALCF computational scientists work with ESP researchers to help with troubleshooting, coding, optimizations for parallelization and GPU acceleration, getting the ESP research applications to run in the pre-Aurora environment. Members of the ALCF team also provide support for projects with big data, deep learning (DL), or machine learning (ML) requirements. “Each of the computational scientists working with researchers speaks the language of the relevant domain sciences as well as high-performance computing. In most projects, preliminary studies must be done in advance to verify that the planned exascale research campaigns will succeed,” states Williams.

The ALCF provides a variety of Aurora-related training opportunities including hackathons, workshops, dungeon sessions, and webinars. Some focus around developing, porting, optimizing code with the Aurora SDK and early Intel GPU hardware housed at Argonne’s Joint Laboratory for System Evaluation (JLSE).

Williams indicates, “The ALCF Data Science team (headed by Venkat Vishwanath, ALCF Co-Manager for the ESP program) is establishing a data science supercomputing software environment on Theta, which is the closest environment to what we plan to have on Aurora—it includes the Balsam workflow manager, support for optimized Python functionalities, ML/DL frameworks, parts of the Big Data stack—all optimized for HPC and scientific applications.”

The Exascale Computing Project (ECP) is developing an exascale software stack, including software needed by application developers writing parallel applications targeting diverse exascale architectures. ALCF partners with and participates in the ECP to deploy this stack for Aurora. Software is also being developed for large scale and in-situ visualization and analytics projects.

The future Aurora supercomputer will also include the Intel Distributed Asynchronous Object Storage (DAOS) I/O technology, which alleviates bottlenecks involved with data-intensive workloads. DAOS, supported on Intel Optane persistent memory, enables a software-defined object store built for large-scale, distributed Non-Volatile Memory (NVM). The combination of Intel Optane persistent memory and DAOS, recently set a new world record, soaring to the top of the Virtual Institute for I/O IO-500 list. DAOS will be the primary data storage platform for ESP and production science projects on Aurora—a major advance beyond conventional parallel file systems.

Argonne is a key participant in the development of oneAPI, a unified and scalable programming model to harness the power of diverse computing architectures in the era of HPC/AI convergence. The oneAPI initiative – supported by over 30 major companies and research organizations and growing – will define programming for an increasingly AI-infused, multi-architecture world. The oneAPI unified programming model is designed to simplify development across diverse CPU, GPU, FPGA, and AI architectures

“Through Argonne’s deep investment in science projects using data-intensive and machine-learning methods, Aurora will advance the state of the art for complex scientific workflows at large scale—especially those including experimental/observational data. Aurora will play a big role here,” states Williams.

References

Author: Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training, and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire