Preparing for Exascale Science on Day 1

By Linda Barney

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascale systems. Researchers in the Argonne Leadership Computing Facility’s (ALCF) Aurora Early Science Program (ESP) are blazing the trail toward reaping those benefits from the U.S. Department of Energy’s (DOE) Argonne National Laboratory’s upcoming Aurora exascale supercomputer.

Work by ESP researchers will help to ensure that critical scientific applications are ready for the scale and architecture of the Aurora machine at the time of deployment. There are currently around 250 researchers involved in pre-Aurora ESP research. According to Timothy Williams, Deputy Division Director of Argonne’s Computational Science (CPS) Division and ALCF Co-Manager for the ESP, “As one of the first exascale systems for science in the world, Aurora should deliver siginifcant scientific results, via the Early Science Program.” The ESP is already producing some exciting research and providing insights for system architecture and infrastructure changes slated for the future Aurora supercomputer.

ESP projects represent research so sophisticated that it has outgrown the capability of today’s leadership-class supercomputers—the selected ESP research projects require exascale computational capabilities. Research Principal Investigators (PIs) submit proposals to ALCF describing their research into a specific scientific problem and why it needs to run on an exascale system.

The ESP awards pre-production computing time to research teams working to prepare key applications and software for the Aurora supercomputer. ESP researchers are granted access to hardware and software running on a pre-Aurora configured supercomputer. Argonne’s Theta supercomputer has been extensively used by the ALCF staff and ESP researchers who are preparing for Aurora.

ESP research projects are in the areas of chemistry, physics (high energy physics, fusion energy, cosmology), biosciences (cancer treatment informatics, modeling metastasis, brain connectomics, molecular dynamics of cell membrane transport proteins), engineering (aerodynamics, nuclear reactor coolant, combustion in coal boilers), materials science (functional materials, semi-conductors).

William Tang, professor of astrophysical sciences at Princeton University and principal research physicist with the DOE’s Princeton Plasma Physics Laboratory (PPPL), is leading an ESP project that is one of the more successful efforts in artificial intelligence (AI) for science using pre-exascale systems. His work is focused on using deep learning and exascale computing power to improve the behavior of fusion reactors aiming to produce sustainable clean energy.  Tang’s AI research studies disruptions in confinement devices called tokamaks, which use a powerful magnetic field to confine hot plasma to produce controlled thermonuclear fusion power.

Engineers working with the potential energy source have estimated a window of only 30 milliseconds to control instabilities that can disrupt the energy production process and damage the plasma confinement device. As part of the ESP research, Tang and colleagues use Princeton’s Fusion Recurrent Neural Network (FRNN) code containing convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas. The hope is to increase warning times and work toward heading off disruptions before they happen—keeping the fusion reactions going and producing sustainable clean energy.

Princeton’s Fusion Recurrent Neural Network (FRNN) code uses convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers. (Image: Eliot Feibush, Princeton Plasma Physics Laboratory) . Courtesy Eliot Feibush, Princeton Plasma Physics Laboratory

Another of the ALCF’s notable ESP projects is led by Katrin Heitmann, Deputy Division Director in the High Energy Physics Division at ANL. Heitmann and team perform research using computational cosmology to understand the large-scale behavior of the universe. The research seeks to understand fundamental aspects the cosmos such as dark matter, dark energy and to help understand why the universe’s rate of expansion is accelerating.

The cosmology simulations are carried out using the Hardware/Hybrid Accelerated Cosmology Code (HACC) developed at Argonne, based on an early effort at Los Alamos. HACC is the only cosmology code suite designed for extreme-scale simulations regardless of a supercomputing system’s architecture. The team also uses advanced data science techniques in conjunction with observational data. These techniques have been developed in collaboration with statisticians over a period of many years. More recently, AI methods have been trained using a large set of images generated from cosmological simulations run with HACC.

Moving toward exascale requires not only moving applications to new computer architecture, but it also requires:

  • Code and workflow development
  • Preliminary studies
  • Scaling and optimization

The ESP provides resources and support across these requirements to help research teams prepare their applications for the architecture of the new supercomputer.

The ALCF computational scientists work with ESP researchers to help with troubleshooting, coding, optimizations for parallelization and GPU acceleration, getting the ESP research applications to run in the pre-Aurora environment. Members of the ALCF team also provide support for projects with big data, deep learning (DL), or machine learning (ML) requirements. “Each of the computational scientists working with researchers speaks the language of the relevant domain sciences as well as high-performance computing. In most projects, preliminary studies must be done in advance to verify that the planned exascale research campaigns will succeed,” states Williams.

The ALCF provides a variety of Aurora-related training opportunities including hackathons, workshops, dungeon sessions, and webinars. Some focus around developing, porting, optimizing code with the Aurora SDK and early Intel GPU hardware housed at Argonne’s Joint Laboratory for System Evaluation (JLSE).

Williams indicates, “The ALCF Data Science team (headed by Venkat Vishwanath, ALCF Co-Manager for the ESP program) is establishing a data science supercomputing software environment on Theta, which is the closest environment to what we plan to have on Aurora—it includes the Balsam workflow manager, support for optimized Python functionalities, ML/DL frameworks, parts of the Big Data stack—all optimized for HPC and scientific applications.”

The Exascale Computing Project (ECP) is developing an exascale software stack, including software needed by application developers writing parallel applications targeting diverse exascale architectures. ALCF partners with and participates in the ECP to deploy this stack for Aurora. Software is also being developed for large scale and in-situ visualization and analytics projects.

The future Aurora supercomputer will also include the Intel Distributed Asynchronous Object Storage (DAOS) I/O technology, which alleviates bottlenecks involved with data-intensive workloads. DAOS, supported on Intel Optane persistent memory, enables a software-defined object store built for large-scale, distributed Non-Volatile Memory (NVM). The combination of Intel Optane persistent memory and DAOS, recently set a new world record, soaring to the top of the Virtual Institute for I/O IO-500 list. DAOS will be the primary data storage platform for ESP and production science projects on Aurora—a major advance beyond conventional parallel file systems.

Argonne is a key participant in the development of oneAPI, a unified and scalable programming model to harness the power of diverse computing architectures in the era of HPC/AI convergence. The oneAPI initiative – supported by over 30 major companies and research organizations and growing – will define programming for an increasingly AI-infused, multi-architecture world. The oneAPI unified programming model is designed to simplify development across diverse CPU, GPU, FPGA, and AI architectures

“Through Argonne’s deep investment in science projects using data-intensive and machine-learning methods, Aurora will advance the state of the art for complex scientific workflows at large scale—especially those including experimental/observational data. Aurora will play a big role here,” states Williams.

References

Author: Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training, and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC21 Cluster Competition Bracketology

June 18, 2021

For the first time ever, cluster competition experts have gathered together for an actual seeding reveal for the ISC21 Student Cluster Competition. What’s this, you ask? It’s where bona fide student cluster competi Read more…

OSC Enables On-Demand HPC for Automotive Engineering Firm

June 18, 2021

In motorsports, vehicle designers are constantly looking for the tiniest sliver of time to shave off through some clever piece of engineering – but as the low-hanging fruit gets snatched up, those advances are getting Read more…

PNNL Researchers Unveil Tool to Accelerate CGRA Development

June 18, 2021

Moore’s law is in decline due to the physical limits of transistor chips, putting an expiration date on a hitherto-perennial exponential trend in computing power – and leaving hardware developers scrambling to contin Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, TU Wien (also known as the Vienna University of Technology). Read more…

Supercomputing Helps Advance Hydrogen Energy Research

June 16, 2021

Hydrogen energy has long remained an elusive target of the renewable energy industry, promising clean, carbon-free energy that would allow for rapid refueling, unlike current battery-based electric vehicles. Hydrogen-bas Read more…

AWS Solution Channel

Accelerating research and development for new medical treatments

Today, more than 290,000 researchers in France are working to provide better support and care for patients through modern medical treatment. To fulfill their mission, these researchers must be equipped with powerful tools. Read more…

FF4EuroHPC Initiative Highlights Results of First Open Call

June 16, 2021

EuroHPC is kicking into high gear, with seven of its first eight systems detailed – and one of them already operational. While the systems are, perhaps, the flashiest endeavor of the European Commission’s HPC effort, Read more…

TU Wien Announces VSC-5, Austria’s Most Powerful Supercomputer

June 17, 2021

Austria is getting a new top supercomputer: VSC-5, the latest iteration of the Vienna Scientific Cluster. The news was announced by VSC-5’s soon-to-be home, T Read more…

Catching up with ISC 2021 Digital Program Chair Martin Schulz

June 16, 2021

Leibniz Research Centre (LRZ)’s content creator Susanne Vieser interviews ISC 2021 Digital Program Chair, Prof. Martin Schulz to gain an understanding of his ISC affiliation, which is outside his usual scope of work at the research center and the Technical University of Munich. Read more…

Intel Debuts ‘Infrastructure Processing Unit’ as Part of Broader XPU Strategy

June 15, 2021

To boost the performance of busy CPUs hosted by cloud service providers, Intel Corp. has launched a new line of Infrastructure Processing Units (IPUs) that take Read more…

ISC Keynote: Glimpse into Microsoft’s View of the Quantum Computing Landscape

June 15, 2021

Looking for a dose of reality and realistic optimism about quantum computing? Matthias Troyer, Microsoft distinguished scientist, plans to do just that in his ISC2021 keynote in two weeks – Quantum Computing: From Academic Research to Real-world Applications. He notes wryly that classical... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire