Preparing for Exascale Science on Day 1

By Linda Barney

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascale systems. Researchers in the Argonne Leadership Computing Facility’s (ALCF) Aurora Early Science Program (ESP) are blazing the trail toward reaping those benefits from the U.S. Department of Energy’s (DOE) Argonne National Laboratory’s upcoming Aurora exascale supercomputer.

Work by ESP researchers will help to ensure that critical scientific applications are ready for the scale and architecture of the Aurora machine at the time of deployment. There are currently around 250 researchers involved in pre-Aurora ESP research. According to Timothy Williams, Deputy Division Director of Argonne’s Computational Science (CPS) Division and ALCF Co-Manager for the ESP, “As one of the first exascale systems for science in the world, Aurora should deliver siginifcant scientific results, via the Early Science Program.” The ESP is already producing some exciting research and providing insights for system architecture and infrastructure changes slated for the future Aurora supercomputer.

ESP projects represent research so sophisticated that it has outgrown the capability of today’s leadership-class supercomputers—the selected ESP research projects require exascale computational capabilities. Research Principal Investigators (PIs) submit proposals to ALCF describing their research into a specific scientific problem and why it needs to run on an exascale system.

The ESP awards pre-production computing time to research teams working to prepare key applications and software for the Aurora supercomputer. ESP researchers are granted access to hardware and software running on a pre-Aurora configured supercomputer. Argonne’s Theta supercomputer has been extensively used by the ALCF staff and ESP researchers who are preparing for Aurora.

ESP research projects are in the areas of chemistry, physics (high energy physics, fusion energy, cosmology), biosciences (cancer treatment informatics, modeling metastasis, brain connectomics, molecular dynamics of cell membrane transport proteins), engineering (aerodynamics, nuclear reactor coolant, combustion in coal boilers), materials science (functional materials, semi-conductors).

William Tang, professor of astrophysical sciences at Princeton University and principal research physicist with the DOE’s Princeton Plasma Physics Laboratory (PPPL), is leading an ESP project that is one of the more successful efforts in artificial intelligence (AI) for science using pre-exascale systems. His work is focused on using deep learning and exascale computing power to improve the behavior of fusion reactors aiming to produce sustainable clean energy.  Tang’s AI research studies disruptions in confinement devices called tokamaks, which use a powerful magnetic field to confine hot plasma to produce controlled thermonuclear fusion power.

Engineers working with the potential energy source have estimated a window of only 30 milliseconds to control instabilities that can disrupt the energy production process and damage the plasma confinement device. As part of the ESP research, Tang and colleagues use Princeton’s Fusion Recurrent Neural Network (FRNN) code containing convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas. The hope is to increase warning times and work toward heading off disruptions before they happen—keeping the fusion reactions going and producing sustainable clean energy.

Princeton’s Fusion Recurrent Neural Network (FRNN) code uses convolutional and recurrent neural network components to integrate both spatial and temporal information for predicting disruptions in tokamak plasmas with unprecedented accuracy and speed on top supercomputers. (Image: Eliot Feibush, Princeton Plasma Physics Laboratory) . Courtesy Eliot Feibush, Princeton Plasma Physics Laboratory

Another of the ALCF’s notable ESP projects is led by Katrin Heitmann, Deputy Division Director in the High Energy Physics Division at ANL. Heitmann and team perform research using computational cosmology to understand the large-scale behavior of the universe. The research seeks to understand fundamental aspects the cosmos such as dark matter, dark energy and to help understand why the universe’s rate of expansion is accelerating.

The cosmology simulations are carried out using the Hardware/Hybrid Accelerated Cosmology Code (HACC) developed at Argonne, based on an early effort at Los Alamos. HACC is the only cosmology code suite designed for extreme-scale simulations regardless of a supercomputing system’s architecture. The team also uses advanced data science techniques in conjunction with observational data. These techniques have been developed in collaboration with statisticians over a period of many years. More recently, AI methods have been trained using a large set of images generated from cosmological simulations run with HACC.

Moving toward exascale requires not only moving applications to new computer architecture, but it also requires:

  • Code and workflow development
  • Preliminary studies
  • Scaling and optimization

The ESP provides resources and support across these requirements to help research teams prepare their applications for the architecture of the new supercomputer.

The ALCF computational scientists work with ESP researchers to help with troubleshooting, coding, optimizations for parallelization and GPU acceleration, getting the ESP research applications to run in the pre-Aurora environment. Members of the ALCF team also provide support for projects with big data, deep learning (DL), or machine learning (ML) requirements. “Each of the computational scientists working with researchers speaks the language of the relevant domain sciences as well as high-performance computing. In most projects, preliminary studies must be done in advance to verify that the planned exascale research campaigns will succeed,” states Williams.

The ALCF provides a variety of Aurora-related training opportunities including hackathons, workshops, dungeon sessions, and webinars. Some focus around developing, porting, optimizing code with the Aurora SDK and early Intel GPU hardware housed at Argonne’s Joint Laboratory for System Evaluation (JLSE).

Williams indicates, “The ALCF Data Science team (headed by Venkat Vishwanath, ALCF Co-Manager for the ESP program) is establishing a data science supercomputing software environment on Theta, which is the closest environment to what we plan to have on Aurora—it includes the Balsam workflow manager, support for optimized Python functionalities, ML/DL frameworks, parts of the Big Data stack—all optimized for HPC and scientific applications.”

The Exascale Computing Project (ECP) is developing an exascale software stack, including software needed by application developers writing parallel applications targeting diverse exascale architectures. ALCF partners with and participates in the ECP to deploy this stack for Aurora. Software is also being developed for large scale and in-situ visualization and analytics projects.

The future Aurora supercomputer will also include the Intel Distributed Asynchronous Object Storage (DAOS) I/O technology, which alleviates bottlenecks involved with data-intensive workloads. DAOS, supported on Intel Optane persistent memory, enables a software-defined object store built for large-scale, distributed Non-Volatile Memory (NVM). The combination of Intel Optane persistent memory and DAOS, recently set a new world record, soaring to the top of the Virtual Institute for I/O IO-500 list. DAOS will be the primary data storage platform for ESP and production science projects on Aurora—a major advance beyond conventional parallel file systems.

Argonne is a key participant in the development of oneAPI, a unified and scalable programming model to harness the power of diverse computing architectures in the era of HPC/AI convergence. The oneAPI initiative – supported by over 30 major companies and research organizations and growing – will define programming for an increasingly AI-infused, multi-architecture world. The oneAPI unified programming model is designed to simplify development across diverse CPU, GPU, FPGA, and AI architectures

“Through Argonne’s deep investment in science projects using data-intensive and machine-learning methods, Aurora will advance the state of the art for complex scientific workflows at large scale—especially those including experimental/observational data. Aurora will play a big role here,” states Williams.

References

Author: Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training, and web design firm in Beaverton, OR.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire