Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eight of the ten fastest systems featured accelerators. The most common form of accelerators is the Graphical Processing Units (GPUs). The June 2020 edition of the Top500 is the first edition listing a system equipped with Nvidia’s new A100 GPU—the HPC-centric Ampere GPU designed with AI applications in mind. With this new flagship Nvidia chip now on the market, domain scientists relying on GPU-accelerated scientific simulations codes wonder whether it is time to upgrade their hardware.

To help answer this question, we take a look at the performance we achieve on the Nvidia A100 for sparse and batched computations and quantify the acceleration over its predecessor, the Nvidia V100 GPU. The motivation for focusing on these routines is that many scientific applications are either (1) based on batched and sparse linear algebra library routines or (2) composed of operations with very similar characteristics. Consequently, the performance gains for these benchmarks may be indicative of the acceleration we may see when porting a scientific computing application from a V100 platform to the A100 architecture, without applying additional code modifications.

In Figure 1, we are visualizing the speedups we get when replacing an Nvidia V100 GPU with an Nvidia A100 GPU without code modification. While the main memory bandwidth has increased on paper from 900 GB/s (V100) to 1,555 GB/s (A100), the speedup factors for the STREAM benchmark routines range between 1.6× and 1.72× for large data sets. At the same time, we observed that when accessing small data sets, the memory bandwidth of the A100 architecture is actually lower than the bandwidth of the V100.

For the sparse matrix-vector product (SpMV)—a key algorithm for sparse linear algebra and scientific computing applications—the performance improvements depend on the individual sparse data format, the kernel implementation, and the specific problem characteristics. The speedup numbers for the SpMV kernels from Nvidia’s cuSPARSE library and the Ginkgo open-source library shown in Figure 1 are all averaged over the more than 2,800 test matrices available in the Suite Sparse Matrix Collection. As many of these matrices are small, the kernels are unable to saturate the memory bandwidth. Consequently, the speedup values for the SpMV kernels are generally much lower than those for the STREAM benchmarks. In the performance analysis for Ginkgo’s iterative linear solvers, we focus on large test problems to ensure the bandwidth is saturated in the vector operations. Depending on the individual algorithm, Ginkgo’s iterative solvers run between 1.5× and 1.8× times faster on the A100 GPU over the V100 GPU.

Finally, we also investigate the acceleration of batched routines that are also common in scientific computing applications. We note MAGMA’s batched routines are heavily tuned for the V100 architecture, and higher speedups may be possible by tuning for the A100 architecture. Nevertheless, we see attractive performance gains up to 1.6× that come “for free” by just switching to newer hardware architecture. It is worth mentioning that the A100 GPU provides tensor core acceleration for FP64 arithmetic. This is a new hardware capability that did not exist on the A100 predecessors. Such drastic architectural improvements present a challenge for open source libraries, such as MAGMA, that aims to provide highly tuned numerical software for a wide range of hardware architectures. As an example, the existing compute-bound kernels in MAGMA do not currently take advantage of the A100 tensor cores for double precision. This means that those kernels are bound, at best, by a theoretical peak performance of 9.7 teraflops (which is about 1.3x better than the V100). However, if MAGMA can take advantage of the new tensor core accelerators, the theoretical peak performance is 19.5 teraflops (which is 2.6x better than the V100). And future versions of MAGMA will take advantage of the new tensor cores.

Given these overall consistent results, we may also expect that complex scientific computing applications will experience a 1.3× to 1.7× speedup that comes when moving from an Nvidia V100 GPU to the new A100 GPU without modification, and this is not even accounting for additional architecture-specific performance optimization. While we cannot answer the question of whether this justifies the investment, it is clear that the Nvidia team succeeded in delivering an architecture with a new focus that delivers considerable performance improvement over its predecessor—not just incremental acceleration.

Figure 1: Performance increase that comes “for free” when moving from the Nvidia V100 GPU to the Nvidia A100 GPU without applying hardware-specific code optimization.

A preprint provides that provides much more details on the performance characteristics of sparse linear algebra routines on the Nvidia V100 and A100 GPUs can be found at https://arxiv.org/abs/2008.08478.

Author Bio – Hartwig Anzt

Hartwig Anzt is a Helmholtz-Young-Investigator Group leader at the Steinbuch Centre for Computing at the Karlsruhe Institute of Technology (KIT). He obtained his Ph.D. in Mathematics at the Karlsruhe Institute of Technology and afterward joined Jack Dongarra’s Innovative Computing Lab at the University of Tennessee in 2013. Since 2015 he also holds a Senior Research Scientist position at the University of Tennessee. Hartwig Anzt has a strong background in numerical mathematics, specializes in iterative methods and preconditioning techniques for the next generation hardware architectures. His Helmholtz group on Fixed-point methods for numerics at Exascale (“FiNE”) is granted funding until 2022. Hartwig Anzt has a long track record of high-quality software development. He is author of the MAGMA-sparse open-source software package managing lead and developer of the Ginkgo numerical linear algebra library, and part of the US Exascale computing project delivering production-ready numerical linear algebra libraries.

Author Bio – Ahmad Abdelfattah

Ahmad Abdelfattah is a research scientist at the Innovative Computing Laboratory, the University of Tennessee. He received his Ph.D. in computer science from King Abdullah University of Science and Technology (KAUST) in 2015, where he was a member of the Extreme Computing Research Center (ECRC). His research interests include numerical linear algebra, parallel algorithms, and performance optimization on massively parallel processors. He received his BSc. and MSc. degrees in computer engineering from Ain Shams University, Egypt.

Author Bio – Jack Dongarra

Jack Dongarra received a Bachelor of Science in Mathematics from Chicago State University in 1972 and a Master of Science in Computer Science from the Illinois Institute of Technology in 1973. He received his Ph.D. in Applied Mathematics from the University of New Mexico in 1980. He worked at the Argonne National Laboratory until 1989, becoming a senior scientist. He now holds an appointment as University Distinguished Professor of Computer Science in the Computer Science Department at the University of Tennessee, has the position of a Distinguished Research Staff member in the Computer Science and Mathematics Division at Oak Ridge National Laboratory (ORNL), Turing Fellow in the Computer Science and Mathematics Schools at the University of Manchester, and an Adjunct Professor in the Computer Science Department at Rice University.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire