It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

By Oliver Peckham

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck, Riken decided to launch Fugaku almost a year ahead of schedule. Since then, Riken and Fugaku have found a particular niche in the crowded COVID-19 research landscape, conducting a swath of intensive simulations focused on how viral droplets proliferate through masks, face shields, train cars and more – and in the process, drawing a very direct line between supercomputing and the general public. HPCwire spoke with Dr. Makoto Tsubokura, head of the Complex Phenomena Unified Simulation Research Team at Riken, to learn more about the past, present and future of Riken’s policy-targeted coronavirus research.

Over the last several months, Riken has consistently hit the news with its COVID-19 research on Fugaku. Early research showed how viral droplets spread through train cars, demonstrating that simply opening the windows could dramatically increase ventilation and decrease the risk of infection. From there, Riken moved on to facial coverings, discovering that face shields were largely ineffective at stopping viral spread, with nearly 100 percent of certain droplets escaping – but that cloth masks, especially non-woven cloth masks, were effective at stopping most droplets. Since then, Riken has simulated offices and auditoriums – and the institute even partnered with a liquor company to develop effective facial coverings for eating and drinking in restaurants and bars.

The Fugaku system. Image courtesy of RIKEN.

How Riken approaches coronavirus droplet simulation

At work behind these simulations: Fugaku’s record 415 Linpack petaflops of supercomputing power, delivered by nearly 160,000 nodes (another record) equipped with Fujitsu A64FX Arm CPUs – and Riken is putting all of it to work on COVID-19.

“We have used a total of three million node hours since May,” Tsubokura said. These hours go toward meticulously simulating thousands and thousands of droplets moving through a space, including a medley of inhabitants, obstacles and airflows.

“For masks and face shields, infection risk analyses are done in situations where people are in close proximity with each other. In the analyses, tens of thousands of droplets of different sizes (diameters) are modeled,” Tsubokura said. “The size and number of the droplets vary depending on the activities, such as coughing, singing, and speaking, and the airflow is taken into consideration for coupled analyses. Various conditions, such as evaporation from the surface of the droplets, adhesion to the wall, and repulsion, are also modeled and incorporated into the calculations.”

A still from Riken’s mask efficacy simulations. Image courtesy of Riken.

For these interpersonal simulations, Tsubokura said, his team typically used around a hundred of Fugaku’s nodes for fifty hours per case. For the simulations of larger spaces (like auditoriums), the team uses similar methods, applying the results of the interpersonal simulations as boundary conditions. These larger simulations use correspondingly more resources: over 500 nodes at a hundred hours per case. And, of course, a single case doesn’t cut it. “Although each simulation requires a modest amount of computational resources,” Tsubokura said, “we need to analyze numerous cases in order to meet various needs and draw meaningful conclusions.”

Riken’s humidity research should have you sweating

Among the most recent research from Riken is some upsetting simulation of viral droplets’ interactions with humidity. To investigate the link between humidity and COVID-19 spread, the researchers simulated the aerosolization of particles at a variety of humidity levels. They found that air with humidity less than 30 percent resulted in more than twice the aerosolized particles than air with humidity of 60 percent. This research has grave implications for the winter months in the Northern Hemisphere, as colder air doesn’t retain as much moisture as warm air.

The below clip from the simulation, courtesy of Riken, illustrates humidity’s dramatic effect.

“After being emitted by coughing and speaking, droplets larger than tens of micrometers will fall and land on the surface within one square meter,” Tsubokura explained. “In contrast, droplets smaller than several micrometers will become airborne as aerosols, and float in the air for a long time (tens of minutes). Aerosolized droplets will leak out of the gaps between the mask and face, and, therefore, ventilation is necessary as an effective defense against infection.”

“Depending on the humidity of the air,” he continued, “droplets smaller than tens of micrometers are rapidly dehydrated and shrink. The effect of humidity below 50 percent is especially remarkable; in the few seconds the droplets travel to the surface of a desk or something, they can be aerosolized and stay in the air for a prolonged period.”

“Thus, in the dry indoors in winter, it is important to take a two-pronged approach,” he concluded. “We need to add humidity to minimize droplet aerosolization and ensure proper ventilation at the same time.”

A direct link to policy

Riken understands the necessity of connecting this research to reality. Its simulation projects have been conducted in coordination with a wide range of entities: private businesses like construction companies, automobile manufacturers, air conditioner manufacturers, airlines, mask manufacturers; and government bodies like Japan’s Ministry of Education, Culture, Sports, Science and Technology, its Ministry of Land, Infrastructure, Transport and Tourism, and the City of Kobe. Tsubokura sits on a special committee in Japan’s Cabinet Office, where he shares the simulation results for use “as scientific bases for guidelines for reopening events and other activities in Japan.”

What’s going on now – and what’s next?

Just like the pandemic, Riken and Fugaku show no signs of slowing down. 

“In response to the requests from the governments and industry mentioned [above], we are currently performing simulations of situations in public transportation (taxis, buses, airline cabins, ambulances), public places (restaurants, bars, hospital rooms, classrooms, live houses, multi-purpose theaters), and also various outdoor events,” Tsubokura said. “In the future, we would like to provide data to help build new lifestyles, building designs, etc. that would allow for sustainable prosperity in the age of coexistence with coronavirus.”

Related Articles

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

Japan’s Fugaku Tops Global Supercomputing Rankings

RIKEN, Suntory Liquors and Toppan Printing Leverage Supercomputing to Reduce the Risk of COVID-19 Infection at Restaurants and Bars

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SPEC Introduces SPEChpc 2021Suite for Heterogeneous Systems

October 28, 2021

SPEC – the Standard Performance Evaluation Company – introduced its newest benchmark suite today, SPEChpc 2021, intended to measure “intense compute parallel performance across one or more nodes.” Founded in 1988 Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

SPEC Introduces SPEChpc 2021Suite for Heterogeneous Systems

October 28, 2021

SPEC – the Standard Performance Evaluation Company – introduced its newest benchmark suite today, SPEChpc 2021, intended to measure “intense compute paral Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire