AMD Courts HPC with 11.5 Teraflops Instinct MI100 GPU

By Tiffany Trader

November 16, 2020

AMD today announced the new MI100 Instinct accelerator, billing it as “the world’s fastest HPC GPU” with 11.5 teraflops of peak double-precision floating point performance. A follow on to the MI50 and MI60 Instinct accelerators launched two years ago (the “world’s first 7nm datacenter GPUs”), the MI100 is also manufactured on TSMC’s 7nm process, but boasts twice as many compute units as the previous generation within the same 300-watt power envelope.

Block diagram of the AMD Instinct MI100 accelerator, powered by the AMD CDNA architecture

The MI100 GPU is the first to incorporate AMD’s Compute DNA (CDNA) architecture with 120 CUs organized into four arrays. An evolution of AMD’s earlier GCN architecture, CDNA includes new matrix core engines that boost computational throughput for different numerical formats.

Going down the spec sheet, the MI100 offers 46.1 teraflops peak single-precision matrix (FP32), 23.1 teraflops peak single-precision (FP32), 184.6 teraflops peak half-precision (FP16) floating-point performance, and 92.3 peak teraflops of bfloat16 performance.

The new AMD matrix core technology provides the MI100 with 7x greater peak half-precision floating point performance compared to the MI50, according to AMD. Brad McCredie (corporate vice president of datacenter GPU and accelerated processing at AMD) told HPCwire the company is exploring other emerging numerical formats that target AI and ML workloads, but doesn’t want to get too far out in front of the industry.

AMD’s MI100 GPU presents a competitive alternative to Nvidia’s A100 GPU, rated at 9.7 teraflops of peak theoretical performance. However, the A100 is returning even higher performance than that on its FP64 Linpack runs. (Yes, you heard right.) The A100 GPU is achieving ~12 double-precision Linpack teraflops (see Selene, for example), and Nvidia confirmed to me they use a different double-precision peak for their marketing material and for their Top500 rMax (9.7 versus 15.1 teraflops, respectively).

As new numerical formats optimized for AI/ML gain traction, performance comparisons – already a challenging, if not dark, art – are becoming more confounding. As always the only sound comparisons rest on cost-performance and real-world evaluations for real-world applications. While prices for the MI100 have not been publicly disclosed and Nvidia does not advertise a list price for its A100s, AMD is claiming a 1.8x to 2.1x flops-per-dollar advantage over its competitor.

Fully connected 4-GPU Infinity Fabric technology hives with the AMD Instinct MI100 GPUs

Implementing the second-generation AMD Infinity Fabric Technology, AMD says the MI100 provides ~2x the peer-to-peer peak I/O bandwidth over PCIe 4.0 with up to 340 Gbps of aggregate bandwidth per card. AMD’s bridging device (see graphic) joins four MI100 PCIe cards into a single coherent scale-up solution. In a server, the MI100 GPUs can be configured with up to two integrated quad GPU hives, each providing up to 552 Gbps of peer-to-peer I/O bandwidth, according to AMD.

“We did four cards [fully-linked] because we think that is the sweet spot for HPC deployments, this four-to-one GPU to CPU ratio,” said McCredie.

Four stacks of 8GB HBM2 memory provide 32GB HBM2 memory on each MI100 GPU. At a clock rate of 1.2 GHz, that’s 1.23 Tbps of memory bandwidth. As with the MI50, the MI100’s support for PCIe Gen 4.0 technology enables 64 Gbps peak theoretical transport data bandwidth between CPU and GPU.

AMD said it has no plans for custom mezzanine form factors with this generation – but AMD does see a role for those form factors going forward as you might expect given their exascale wins (Frontier and El Capitan). While detailed node structures have not been publicly disclosed, both of these designs employ a four-to-one GPU to CPU ratio.

Source: AMD Financial Analyst Day slide (March 2020) – link to coverage

HPC market watcher Addison Snell, CEO of Intersect360 Research, remarked on AMD’s HPC focus and the implementation of its datacenter-centric CDNA architecture, distinct from the gaming-oriented RDNA (Radeon DNA) architecture.

“With the MI100 GPU, AMD is staying pure to its corporate focus on HPC,” said Snell. “While Nvidia’s messaging and benchmarking have been AI-heavy, AMD is hitting HPC hard, with 11.5 teraflops of double-precision performance as the marquee stat.”

“AMD is also emphasizing its new CDNA architecture as the focus for computing versus graphics; that’s where we find the GPU-to-GPU communication on the second-generation Infinity architecture.”

Prominent HPC sites Oak Ridge National Laboratory, the University of Pittsburgh and Pawsey Supercomputing Center evaluated the new GPUs along with AMD’s software frameworks. Their reports are positive.

“We’ve received early access to the MI100 accelerator, and the preliminary results are very encouraging. We’ve typically seen significant performance boosts, up to 2-3x compared to other GPUs,” said Bronson Messer, director of science, Oak Ridge Leadership Computing Facility. “What’s also important to recognize is the impact software has on performance. The fact that the ROCm open software platform and HIP developer tool are open source and work on a variety of platforms, it is something that we have been absolutely almost obsessed with since we fielded the very first hybrid CPU/GPU system.”

Oak Ridge National Laboratory: NAMD 2.14, STMV 1.06M atoms benchmark, 2x EPYC 7742 + MI100 vs 2x Power9 + V100 SXM, Cholla, Total Run measured. 2x EPYC 7742 + MI100 vs 2x EPYC 7742 + V100, PIConGPU, Total Run measured. 2x EPYC 7742 + MI100 vs 2x EPYC 7742 + V100, GESTS, Total Run measured, 2x EPYC 7742 + MI100 vs 2x EPYC 7742 + V100 (Source: Oak Ridge and AMD)

AMD is preparing ROCm – its open source toolset consisting of compilers, programming APIs and libraries – to be foundational for exascale computing. The recently released ROCm 4.0 has upgraded the compiler to be open source and unified to support both OpenMP 5.0 and HIP, said AMD. HIP (AMD’s heterogeneous-compute interface for portability) is a C++ runtime API that allows developers to write single-source code that can run on AMD and Nvidia GPUs (and possibly future Intel ones as well).

AMD reported that MI100-based systems will start shipping this month from a number of partners, among them Dell, Gigabyte, Hewlett Packard Enterprise and Supermicro.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire