Nvidia Unveils A100 80GB Powerhouse GPU at SC20

By Todd R. Weiss

November 16, 2020

Nvidia has doubled the memory of its A100 datacenter GPUs with its new A100 80GB version, which aims to drive new levels of supercomputing performance in a wide variety of uses, from AI and ML research to engineering and more.

The new A100 80GB GPU comes just six months after the launch of the original A100 40GB GPU and is available in Nvidia’s DGX A100 SuperPod architecture and (new) DGX Station A100 systems, the company announced Monday (Nov. 16) at SC20.

The A100 80GB includes third-generation tensor cores, which provide up to 20x the AI throughput of the previous Volta generation with a new format TF32, as well as 2.5x FP64 for HPC, 20x INT8 for AI inference and support for the BF16 data format. Also included is faster HBM2e (high-bandwidth memory) with more than 2 terabytes per second of memory bandwidth, and Nvidia multi-instance GPU (MIG) technology that doubles the memory per isolated instance, providing up to seven MIGs with 10 gigabytes each. Third-generation NVLink and NVSwitch capabilities are also included, which provides twice the GPU-to-GPU bandwidth of the previous generation interconnect technology and accelerating data transfers to the GPU for data-intensive workloads to 600 gigabytes per second.

eight-way and four-way HDX A100 80GB baseboards

Systems powered by the new GPUs are expected to be available in the first half of 2021 or sooner from vendors including Atos, Dell Technologies, Fujitsu, GIGABYTE, Hewlett Packard Enterprise, Inspur, Lenovo, Quanta and Supermicro using HGX A100 integrated baseboards in four- or eight-GPU configurations, according to Nvidia.

Also unveiled by Nvidia Monday was its new DGX Station A100 machine, which the company calls an AI datacenter supercomputer in a box. Marketed as a petascale integrated AI workgroup server, this is the second-generation of the device, which originally debuted in 2017. The DGX Station A100, with 2.5 petaflops of AI performance, is aimed at machine learning and data science workloads for teams working in corporate offices, research facilities, labs and in home offices.

Nvidia also introduced its new Mellanox NDR 400 gigabit-per-second InfiniBand family of interconnect products, which are expected to be available in Q2 of 2021. The lineup includes adapters, data processing units (DPUs–Nvidia’s version of smart NICs), switches, and cable. Pricing was not disclosed. Besides the obvious 2X jump in throughput from HDR 200 Gbps InfiniBand devices available now, Nvidia promises improved TCO, beefed up in-network computing features, and increased scaling capabilities.

The A100 80GB GPU

Paresh Kharya, senior director of product management for accelerated computing for Nvidia, said the latest A100 80GB GPUs provide dramatic performance and efficiency gains for users when combined with all the optimizations in Nvidia’s software platform. For larger scale simulations, performance is 1.8 times faster compared to the A100 model the company announced six months ago.

Nvidia’s updated Station with four A100 80GB GPUs and one 64-core AMD Eypc Rome CPU

Keeping to the same 400-watt thermal design parameter (TDP) as the A100 40GB, the A100 80GB is an SXM4 form factor GPU, available in four-way and eight-way HDX board configurations. Customers will still be able to get A100 GPUs in PCIe form factors, but only the 40GB memory variants, said Kharya.

“These are the same GPUs that are also available as a part of our HGX platform,” he said. “And our system maker partners are designing their servers based off of these HGX systems. And you can also expect them to be available more broadly into all kinds of form factors.”

For Nvidia, the new GPUs are part of the company’s approach as a full stack vendor, said Kharya. “We basically are ready to meet our customers at any level in our stack. DGX systems and SuperPods are at the top of our stack with [complete] turnkey solutions. However, if our customers want to buy and engage us at a different level, we engage them at our HGX baseboard level with these new products.”

The key to Nvidia’s latest components is that when they are combined with the company’s software, they provide supercomputer platforms that can help greatly expand scientific research and computing, Kharya told HPCwire sister publication EnterpriseAI.

“Scientific computing is no longer just about simulations,” he said. “The fusion of simulations with AI and data analytics is vital for the progress of science,” he said. “As our customers are designing their next generation supercomputers, it’s a really important consideration for them that they buy and create supercomputers that are not [just aimed] at running traditional simulations alone. [They need to be] great at all the computational methods that are being applied to advanced scientific progress, including AI and data analysis. And all of the all of these methods together, are needed in order to really make progress.”

Pricing for the new hardware will be determined by Nvidia system partners, he added.

The DGX A100 640GB SuperPOD

The new Nvidia DGX A100 80GB A100s are implemented in Nvidia’s DGX SuperPod Solution for Enterprise, allowing organizations to build, train and deploy massive AI models on turnkey AI supercomputers in units of 20 DGX A100 systems.

The SuperPods are productized clusters of machines from 20 systems to 140 systems, and then in multiples of 140 after that, said Charlie Boyle, vice president and general manager of DGX systems for Nvidia. “It’s the fastest way for a customer to get AI infrastructure into their datacenter, built on top of the recipe that we run internally supported by Nvidia. Any problem that a customer could ever encounter, we have the exact same solution running inside.”

Nvidia in October shipped a number of DGX A100 640GB SuperPod systems to customers and says systems are in production now, including the University of Florida system that was announced in July (the result of a large endowment by UF alumnus and Nvidia cofounder Chris Malachowsky).

Nvidia’s in-house Selene supercomputer has already been upgraded with these new DGX A100 640GB units, boosting the system’s performance from 27.6 petaflops to 63.4 Lipack petaflops, moving Selene up two spots on the newly minted Top500 list into fifth place. Nvidia said that Selene’s DGX A100 320GB systems were upgraded to the 640GB boards to develop and test the customer upgrade process (discussed in more detail further below).

The new 640GB DGXs are also the foundation of the Cambridge-1 AI supercomputer, being built for biomedical research and healthcare. Announced by Nvidia in October, the UK-based supercomputer is scheduled to deliver more than 400 petaflops of mixed-precision AI performance (~8 petaflops of FP64 Linpack performance) with the first-generation components. The new system is named for University of Cambridge where Francis Crick and James Watson and their colleagues famously worked on solving the structure of DNA. It will feature 80 DGX A100s and is expected to be installed by the end of the year and provide access to collaborators in the first half of 2021.

The DGX machines are built in a modular fashion, said Boyle, which will allow customers of first-generation DGX A100 320GB systems to be able to upgrade their machines to the latest specifications with just with a tray change and some field updates. The upgrade, done by an Nvidia-authorized engineer swaps the existing GPU tray of a DGX A100 320GB system with the new 640GB version, and adds an additional 1TB of RAM, four more drives and a 10th CX6 NIC. The memory, drives and NIC are all added to existing open slots in the system.

“We expect those kits to be out starting in first quarter of next year for customers,” said Boyle. “We want to provide that investment protection for people.”

The DGX Station A100 Supercomputer In a Box

With 2.5 petaflops of AI performance, the latest DGX Station A100 supercomputer workgroup server runs four of the latest Nvidia A100 80GB tensor core GPUs and one AMD 64-core Eypc Rome CPU. GPUs are interconnected using third-generation Nvidia NVLink, providing up to 320GB of GPU memory. Using Nvidia MIG capability, a single DGX Station A100 provides up to 28 separate GPU instances to run parallel jobs and support multiple users without impacting system performance, according to the company. The latest DGX Station A100 is more than 4x faster than the previous generation DGX Station, according to Nvidia, and delivers nearly a 3x performance boost for BERT Large AI training.

Boyle said the DGX Station A100 brings customers supercomputers in a short time span, rather than taking months or years to build one on their own.

Prices for the DGX Station A100 are determined by Nvidia Partner Network channel partners who sell the systems for Nvidia, he said. Systems should begin shipping in late January, he added.

Analysts Give High Marks

Karl Freund, a senior analyst for machine learning, HPC and AI with Moor Insights & Strategy, said Nvidia’s A100 announcements are compelling.

“The move to HBM2e was expected, but it did surprise me that the company moved so quickly given the complete lack of any significant competitive pressures,” said Freund. “I suspect this was driven by customer requirements, especially for recommendation engines which demand massive tables and memory.”

And the improved DGX Station A100 product is also impressive and will be welcomed by developers in both HPC and AI, he said. “The net result is that Nvidia just raised the bar again and I don’t see anyone who can clear it to challenge their leadership.”

Another analyst, Addison Snell, principal of Intersect360 Research, said the expansion of memory capacity in the DGX A100 platform makes it suitable to a greater range of mixed-workload environments, which may appeal to traditional supercomputing labs that wish to expand their focus on AI. “That said, this is potentially predominantly attractive to the hyperscale market, which is still the primary driver of AI spending,” he said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYCL will contribute to a heterogeneous future for C++. Reinde Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Quantum Origin, a service to deliver “completely unpredicta Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

AWS Solution Channel

Introducing AWS HPC Connector for NICE EnginFrame

HPC customers regularly tell us about their excitement when they’re starting to use the cloud for the first time. In conversations, we always want to dig a bit deeper to find out how we can improve those initial experiences and deliver on the potential they see. Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

Royalty-free stock illustration ID: 1675260034

Solving Heterogeneous Programming Challenges with SYCL

December 8, 2021

In the first of a series of guest posts on heterogenous computing, James Reinders, who returned to Intel last year after a short "retirement," considers how SYC Read more…

Quantinuum Debuts Quantum-based Cryptographic Key Service – Is this Quantum Advantage?

December 7, 2021

Quantinuum – the newly-named company resulting from the merger of Honeywell’s quantum computing division and UK-based Cambridge Quantum – today launched Q Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire