Nvidia Unveils A100 80GB Powerhouse GPU at SC20

By Todd R. Weiss

November 16, 2020

Nvidia has doubled the memory of its A100 datacenter GPUs with its new A100 80GB version, which aims to drive new levels of supercomputing performance in a wide variety of uses, from AI and ML research to engineering and more.

The new A100 80GB GPU comes just six months after the launch of the original A100 40GB GPU and is available in Nvidia’s DGX A100 SuperPod architecture and (new) DGX Station A100 systems, the company announced Monday (Nov. 16) at SC20.

The A100 80GB includes third-generation tensor cores, which provide up to 20x the AI throughput of the previous Volta generation with a new format TF32, as well as 2.5x FP64 for HPC, 20x INT8 for AI inference and support for the BF16 data format. Also included is faster HBM2e (high-bandwidth memory) with more than 2 terabytes per second of memory bandwidth, and Nvidia multi-instance GPU (MIG) technology that doubles the memory per isolated instance, providing up to seven MIGs with 10 gigabytes each. Third-generation NVLink and NVSwitch capabilities are also included, which provides twice the GPU-to-GPU bandwidth of the previous generation interconnect technology and accelerating data transfers to the GPU for data-intensive workloads to 600 gigabytes per second.

eight-way and four-way HDX A100 80GB baseboards

Systems powered by the new GPUs are expected to be available in the first half of 2021 or sooner from vendors including Atos, Dell Technologies, Fujitsu, GIGABYTE, Hewlett Packard Enterprise, Inspur, Lenovo, Quanta and Supermicro using HGX A100 integrated baseboards in four- or eight-GPU configurations, according to Nvidia.

Also unveiled by Nvidia Monday was its new DGX Station A100 machine, which the company calls an AI datacenter supercomputer in a box. Marketed as a petascale integrated AI workgroup server, this is the second-generation of the device, which originally debuted in 2017. The DGX Station A100, with 2.5 petaflops of AI performance, is aimed at machine learning and data science workloads for teams working in corporate offices, research facilities, labs and in home offices.

Nvidia also introduced its new Mellanox NDR 400 gigabit-per-second InfiniBand family of interconnect products, which are expected to be available in Q2 of 2021. The lineup includes adapters, data processing units (DPUs–Nvidia’s version of smart NICs), switches, and cable. Pricing was not disclosed. Besides the obvious 2X jump in throughput from HDR 200 Gbps InfiniBand devices available now, Nvidia promises improved TCO, beefed up in-network computing features, and increased scaling capabilities.

The A100 80GB GPU

Paresh Kharya, senior director of product management for accelerated computing for Nvidia, said the latest A100 80GB GPUs provide dramatic performance and efficiency gains for users when combined with all the optimizations in Nvidia’s software platform. For larger scale simulations, performance is 1.8 times faster compared to the A100 model the company announced six months ago.

Nvidia’s updated Station with four A100 80GB GPUs and one 64-core AMD Eypc Rome CPU

Keeping to the same 400-watt thermal design parameter (TDP) as the A100 40GB, the A100 80GB is an SXM4 form factor GPU, available in four-way and eight-way HDX board configurations. Customers will still be able to get A100 GPUs in PCIe form factors, but only the 40GB memory variants, said Kharya.

“These are the same GPUs that are also available as a part of our HGX platform,” he said. “And our system maker partners are designing their servers based off of these HGX systems. And you can also expect them to be available more broadly into all kinds of form factors.”

For Nvidia, the new GPUs are part of the company’s approach as a full stack vendor, said Kharya. “We basically are ready to meet our customers at any level in our stack. DGX systems and SuperPods are at the top of our stack with [complete] turnkey solutions. However, if our customers want to buy and engage us at a different level, we engage them at our HGX baseboard level with these new products.”

The key to Nvidia’s latest components is that when they are combined with the company’s software, they provide supercomputer platforms that can help greatly expand scientific research and computing, Kharya told HPCwire sister publication EnterpriseAI.

“Scientific computing is no longer just about simulations,” he said. “The fusion of simulations with AI and data analytics is vital for the progress of science,” he said. “As our customers are designing their next generation supercomputers, it’s a really important consideration for them that they buy and create supercomputers that are not [just aimed] at running traditional simulations alone. [They need to be] great at all the computational methods that are being applied to advanced scientific progress, including AI and data analysis. And all of the all of these methods together, are needed in order to really make progress.”

Pricing for the new hardware will be determined by Nvidia system partners, he added.

The DGX A100 640GB SuperPOD

The new Nvidia DGX A100 80GB A100s are implemented in Nvidia’s DGX SuperPod Solution for Enterprise, allowing organizations to build, train and deploy massive AI models on turnkey AI supercomputers in units of 20 DGX A100 systems.

The SuperPods are productized clusters of machines from 20 systems to 140 systems, and then in multiples of 140 after that, said Charlie Boyle, vice president and general manager of DGX systems for Nvidia. “It’s the fastest way for a customer to get AI infrastructure into their datacenter, built on top of the recipe that we run internally supported by Nvidia. Any problem that a customer could ever encounter, we have the exact same solution running inside.”

Nvidia in October shipped a number of DGX A100 640GB SuperPod systems to customers and says systems are in production now, including the University of Florida system that was announced in July (the result of a large endowment by UF alumnus and Nvidia cofounder Chris Malachowsky).

Nvidia’s in-house Selene supercomputer has already been upgraded with these new DGX A100 640GB units, boosting the system’s performance from 27.6 petaflops to 63.4 Lipack petaflops, moving Selene up two spots on the newly minted Top500 list into fifth place. Nvidia said that Selene’s DGX A100 320GB systems were upgraded to the 640GB boards to develop and test the customer upgrade process (discussed in more detail further below).

The new 640GB DGXs are also the foundation of the Cambridge-1 AI supercomputer, being built for biomedical research and healthcare. Announced by Nvidia in October, the UK-based supercomputer is scheduled to deliver more than 400 petaflops of mixed-precision AI performance (~8 petaflops of FP64 Linpack performance) with the first-generation components. The new system is named for University of Cambridge where Francis Crick and James Watson and their colleagues famously worked on solving the structure of DNA. It will feature 80 DGX A100s and is expected to be installed by the end of the year and provide access to collaborators in the first half of 2021.

The DGX machines are built in a modular fashion, said Boyle, which will allow customers of first-generation DGX A100 320GB systems to be able to upgrade their machines to the latest specifications with just with a tray change and some field updates. The upgrade, done by an Nvidia-authorized engineer swaps the existing GPU tray of a DGX A100 320GB system with the new 640GB version, and adds an additional 1TB of RAM, four more drives and a 10th CX6 NIC. The memory, drives and NIC are all added to existing open slots in the system.

“We expect those kits to be out starting in first quarter of next year for customers,” said Boyle. “We want to provide that investment protection for people.”

The DGX Station A100 Supercomputer In a Box

With 2.5 petaflops of AI performance, the latest DGX Station A100 supercomputer workgroup server runs four of the latest Nvidia A100 80GB tensor core GPUs and one AMD 64-core Eypc Rome CPU. GPUs are interconnected using third-generation Nvidia NVLink, providing up to 320GB of GPU memory. Using Nvidia MIG capability, a single DGX Station A100 provides up to 28 separate GPU instances to run parallel jobs and support multiple users without impacting system performance, according to the company. The latest DGX Station A100 is more than 4x faster than the previous generation DGX Station, according to Nvidia, and delivers nearly a 3x performance boost for BERT Large AI training.

Boyle said the DGX Station A100 brings customers supercomputers in a short time span, rather than taking months or years to build one on their own.

Prices for the DGX Station A100 are determined by Nvidia Partner Network channel partners who sell the systems for Nvidia, he said. Systems should begin shipping in late January, he added.

Analysts Give High Marks

Karl Freund, a senior analyst for machine learning, HPC and AI with Moor Insights & Strategy, said Nvidia’s A100 announcements are compelling.

“The move to HBM2e was expected, but it did surprise me that the company moved so quickly given the complete lack of any significant competitive pressures,” said Freund. “I suspect this was driven by customer requirements, especially for recommendation engines which demand massive tables and memory.”

And the improved DGX Station A100 product is also impressive and will be welcomed by developers in both HPC and AI, he said. “The net result is that Nvidia just raised the bar again and I don’t see anyone who can clear it to challenge their leadership.”

Another analyst, Addison Snell, principal of Intersect360 Research, said the expansion of memory capacity in the DGX A100 platform makes it suitable to a greater range of mixed-workload environments, which may appeal to traditional supercomputing labs that wish to expand their focus on AI. “That said, this is potentially predominantly attractive to the hyperscale market, which is still the primary driver of AI spending,” he said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire