Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

By Oliver Peckham

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. The prize, which was awarded in a ceremony today at the (virtual) SC20 supercomputing conference, recognizes “outstanding research achievement towards the understanding of the COVID-19 pandemic through the use of high-performance computing.” 

Nominations for the prestigious award were selected “based on performance and innovation in their computational methods, in addition to their contributions towards understanding the nature, spread and/or treatment of the disease.” The award is accompanied by a $10,000 prize. The Special Prize for High Performance Computing-Based COVID-19 Research is slated to be awarded in 2021 as well.

The four finalist teams presented virtually at SC20 in advance of the awards ceremony, showcasing the myriad ways in which massive supercomputing has been utilized to provide crucial knowledge around the pandemic and the virus at its core, from atom-by-atom simulations of the viral envelope to person-by-person simulations of major cities.

And the winner is…

Bronis R. de Supinski, chair of the Gordon Bell Prize Committee and CTO for Livermore Computing at Lawrence Livermore National Laboratory (LLNL), took the virtual stage to announce the winning team: a wide-reaching, nationwide collaboration to develop unprecedented simulations of key aspects of the novel coronavirus.

Image courtesy of SC20

AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics

Team: Lorenzo Casalino, Abigail Dommer, Zied Gaieb, Emilia P. Barros, Terra Stzain, Surl-Hee Ahn, Anda Trifan, Alexander Brace, Anthony Bogetti, Heng Ma, Hyungro Lee, Matteo Turilli, Syma Khalid, Lillian Chong, Carlos Simmerling, David Hardy, Julio Maia, James Phillips, Thorsten Kurth, Abraham Stern, Lei Huang, John McCalpin, Mahidhar Tatineni, Tom Gibbs, John Stone, Shantenu Jha, Arvind Ramanathan and Rommie E. Amaro.

The winning team zeroed in on a part of the SARS-CoV-2 virus that has become notorious to anyone following COVID-19 research: the spike protein, which both provides the coronavirus with its namesake crown-like spikes and allows it to infect human cells. The team used Summit (still the second-most powerful publicly ranked supercomputer) to simulate the SARS-CoV-2’s spike protein and viral envelope using 305 million atoms.

The resulting model of SARS-CoV-2. Image courtesy of Rommie Amaro and Lorenzo Casalino.

“Experiments give us a picture of what these things look like, but they can’t tell us the whole story,” said Rommie Amaro, co-lead of the project and professor and endowed chair of chemistry and biochemistry at the University of California San Diego. “The only way we can do this is through simulations, and right now we are pushing the capabilities of molecular simulations to the limits of the computer architectures that we have on this earth. This is at the edge of possibilities of what people are capable of doing.”


“We are giving people never-before-seen, intimate views of this virus, with resolution that is impossible to achieve experimentally.”


“We are giving people never-before-seen, intimate views of this virus, with resolution that is impossible to achieve experimentally,” she added. “Why we care about this is because if we want to understand how the virus infects the host cell, if we want to be able to design antibodies and new drugs to block and cure infection, if we want to be able to design new therapeutics, this information at this very fine resolution at the atomic level is required.”

To achieve the massive simulation, the team optimized and scaled the Nanoscale Molecular Dynamics (NAMD) code across Summit, a feat made possible through extensive work on other supercomputers, including Frontera, Comet and ThetaGPU. The results illuminated the virus’ sugary glycan shield – which protects it from many pharmaceutical attack strategies – and highlighted the critical role of the virus’ receptor binding domain.


An incredible slate of finalists

Though the SARS-CoV-2 simulations took home the prize at the end of the day, the entire field of finalists illustrated the astonishing work that the HPC community has put into ending the pandemic. Keep reading to learn more about the other three finalist teams.

High-Throughput Virtual Laboratory for Drug Discovery Using Massive Datasets

Team: Jens Glaser, Josh V. Vermaas, David M. Rogers, Jeff Larkin, Scott LeGrand, Swen Boehm, Matthew B. Baker, Aaron Scheinberg, Andreas F. Tillack, Mathialakan Thavappiragasam, Ada Sedova and Oscar Hernandez.

Another ORNL-based team also used Summit – this time, to screen more than a billion compounds for their ability to bind with two different structures of SARS-CoV-2’s main protease… and completing each of those screenings in under 24 hours. 

To achieve those remarkable results, the team scaled AutoDock-GPU to 27,612 of Summit’s Nvidia V100 GPUs, ending up with a 350-fold speedup compared to the CPU version of the same code. The researchers faced an uphill battle on this front, as very few molecular docking codes have used GPUs, and fewer still are well-supported – let alone open-source. The researchers worked with Nvidia to create a CUDA version of the code for high-throughput analysis.


“When we were using Summit, we were docking 20,000 compounds a second.”


“When we were using Summit, we were docking 20,000 compounds a second,” said Ada Sedova, a biophysicist in the Molecular Biophysics Group within ORNL’s Biosciences Division and co-lead of the project. “We have done this in 24 hours with full optimization of these poses, the way people would normally do at the small scale. To be able to do this on a billion compounds would have taken months on even the largest academic clusters without the optimizations of AutoDock-GPU for Summit.”

An illustration of how small molecules can occupy spaces in SARS-CoV-2’s viral proteins. Image courtesy of Joshua Vermaas.

“We think that the rapid response to the COVID-19 pandemic that we stood up on Summit is essential to developing a forward-looking computational capability for future global health crises,” added Jens Glaser, a computational scientist at ORNL and another co-lead of the project. “Importantly, the speedup was realized end-to-end and contains necessary machine learning and data analytics components, and that allows us to incorporate feedback from experiments into the machine learning models and converge onto predictions and more potent inhibitors.”

A Population Data-Driven Workflow for COVID-19 Modeling and Learning

Team: Jonathan Ozik, Justin M. Wozniak, Nicholson Collier, Charles M. Macal and Mickael Binois.

A finalist team led by Argonne National Laboratory, meanwhile, used supercomputing for epidemiological analysis. Using Argonne’s Theta supercomputer (39th on the most recent Top500), the team modeled how COVID-19 spreads through populations using a city-scale representation of Chicago. The simulated Windy City was populated by 2.7 million digital individuals traveling among 1.2 million locations. The model was optimized to simultaneously run on more than 800 of Theta’s nodes.

Mobility patterns generated by the CityCOVID model. Image courtesy of Argonne.

“In ChiSIM [the Chicago Social Interaction Model], we represent every person in the city of Chicago as an individual, including their socioeconomic and demographic variables, their activities and the places they visit – schools and workplaces, for example – in the course of those activities,” explained Nicholson Collier, a senior software engineer at Argonne. “As the agents follow their activity schedules, they become colocated with other agents in a place and interact with them, leading to trillions of interactions over the course of the simulation.”


“… trillions of interactions over the course of the simulation.”


“With this model, you have potentially many people interacting in many different ways: some might be infected, some might be susceptible, and they mix in different proportions in a variety of different locations – there are different locations like schools and workplaces where very different parts of the population interface,” said Jonathan Ozik, an Argonne computational scientist and co-lead of the project. ​“The multitude of possibilities the model presents make it quite qualitatively different from – and quantitatively more complex than – a statistical model or more simplified compartmental models, which are much faster to run.”

Throughout the pandemic, results from CityCOVID have been used to inform stakeholders and decision-makers, particularly in Chicago and the state of Illinois.

Enabling Rapid COVID-19 Small Molecule Drug Design Through Scalable Deep Learning of Generative Models

Team: Sam Ade Jacobs, Tim Moon, Kevin McLoughlin, William D. Jones, David Hysom, Dong H. Ahn, John Gyllenhaal, Pythagoras Watson, Felice C. Lightstone, Jonathan E. Allen, Ian Karlin and Brian Van Essen.

Another finalist team hailed from LLNL, where researchers used Sierra (which recently defended its title as the 3rd most powerful publicly ranked supercomputer) to create an accurate, efficient generative model for producing novel compounds with the potential to treat COVID-19. After training the model on over 1.6 billion small molecule compounds, the team reduced the training time from a day to just 23 minutes.

“Drug design is both costly in time and effort,” said Brian Van Essen, a computer scientist and leader of the Informatics Group at LLNL. “It’s normally a 15-year process to bring a new therapeutic from discovery all the way through FDA review.” The goal, he said, was to greatly condense the time frame of the first two trial phases, but also reduce the high risk of failure in phase three trials.

The pharmaceutical pipeline. Image courtesy of the researchers.

“Our globally asynchronous multi-level parallel training approach strong scales to all of Sierra with up to 97.7 percent efficiency,” the researchers wrote, adding that they achieved 318 petaflops for 17.1 percent of half-precision peak using tensor cores. The researchers say that their model can be used to create an automated “self-learning design loop” for drug discovery, even with much less impressive computing resources than Sierra.


“This ability to quickly create high-quality machine learning models changes the time-to-insight from a compute-limited issue to a human-limited one.”


“This capability will have a dramatic impact on drug discovery,” said Ian Karlin, an LLNL computer scientist who co-authored the paper. “This ability to quickly create high-quality machine learning models changes the time-to-insight from a compute-limited issue to a human-limited one.”

Next, the researchers want to improve the scaling even further, train using more types of models, increase automation and improve overall efficiency.

And also…

Don’t forget to check our coverage of the winners and finalists for the 2020 ACM Gordon Bell Prize.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Natcast/NSTC Issues Roadmap to Implement CHIPS and Science Act

May 29, 2024

Yesterday, CHIPS for America and Natcast, the operator of the National Semiconductor Technology Center (NSTC), released a roadmap of early steps for implementing portions of the ambitious $5 billion program. Natcast is t Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help uncover new insights about materials science. The findings of Read more…

Microsoft’s ARM-based CPU Cobalt will Support Windows 11 in the Cloud

May 29, 2024

Microsoft's ARM-based CPU, called Cobalt, is now available in the cloud for public consumption. Cobalt is Microsoft's first homegrown CPU, which was first announced six months ago. The cloud-based Cobalt VMs will support Read more…

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and flexibility of the platform’s AI capabilities. Announced Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

Scientists Use GenAI to Uncover New Insights in Materials Science

May 29, 2024

With the help of generative AI, researchers from MIT and the University of Basel in Switzerland have developed a new machine-learning framework that can help un Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire