SC20 Keynote: Climate, Exascale & the Ultimate Answer

By Oliver Peckham

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. 

In his keynote, Stevens traced the history of climate science from its earliest days through the modern-day brink of the exascale era. He likened the evolution of computational climatology to Deep Thought, the gargantuan supercomputer from Douglas Adams’ novel The Hitchhiker’s Guide to the Galaxy. In the book, scientists task the supercomputer with delivering the ultimate answer to life, the universe and everything. 

“Deep Thought … thinks deeply for 75 million years, and it comes up with the answer to the ultimate question that they posed, but by that time the descendants of the people who built the computer forgot the question,” Stevens recounted. “So they went about and built another computer, one out of organic components, and they called it Earth – and the idea then was to go into the computer and learn more about the question that they got the ultimate answer to.”

“And so if you keep that in mind, you’re all set for today’s story.”

Meanwhile, 130 years ago…

To explain his analogy, Stevens took the audience back to 1890. At that point, he said, Svante Arrhenius was developing a seminal equation to explain the surface temperature of the Earth.

Bjorn Stevens explains Arrhenius’ equation. Image courtesy of Bjorn Stevens/SC20.

“So he worked out this idea that you see here: that … the average surface temperature of the Earth could be related to how radiant energy (that’s ‘R’) … flows through the system,” Stevens said. “And he thought about a bunch of other things, too – so he introduces the idea of ‘H’ – that’s horizontal heat transport – might matter, and he introduces ‘V,’ the idea that the vertical heat transport might matter, ‘O’ (other things) could matter, and ‘C’ was the carbon dioxide and water vapor – the greenhouse gases.”

So: if one understood radiant energy (R), horizontal heat transport (H), vertical heat transport (V), greenhouse gases (C) and other things (O), one could explain the Earth’s surface temperature – and crucially, they could predict how fluxes in those variables would change it.

“The problem was, [Arrhenius] didn’t really understand any of them,” Stevens said.


“The problem was, [he] didn’t really understand any of them.”


Stevens ran through the various meteorologists and climatologists who worked on solving the variables in Arrhenius’ equation: Vilhelm Bjerknes did some early work on horizontal heat transport; John von Neumann used the ENIAC computer to flesh horizontal transport out even more; Fritz Möller worked on radiant energy; Joseph Smagorinsky put together a lab to build circulation models of Earth.

Enter Syukuro Manabe. Circa 1967, Manabe worked with both Möller and Smagorinsky to solidify radiant energy and approximate vertical heat transport. Using computer modeling, they developed the first compelling representation of how the surface temperature could change if you increased greenhouse gases – but, Stevens cautioned, there were lots of exclusions and approximations.

Over the years, many other things (O) got added to the equations and models. By 1979, with H and R more or less solved for, and greenhouse gases (C) standing as the independent variable in which researchers were most interested, there remained one glaring stumbling block.

V for vexation

V: vertical heat transport.

“The big thing is getting the V right,” Stevens said. “And as pretty as people make these sorts of models look, they don’t help in the least with V.”

But why does this one variable pose such a huge problem relative to the others? As it turns out, it has to do with the thinness of Earth’s atmosphere.

“The thinness of the atmosphere is on one hand a really wonderful thing, because it means that [horizontal heat transport] involves a sort of quasi-two-dimensional circulation,” Stevens explained. “There’s not a lot of vertical going on. Transporting energy from the equator to the pole happens in a thin atmosphere, and you don’t need to worry so much about the vertical to get it right… but the thinness becomes a problem when you think about V.”

Stevens pointed out that the Earth’s circumference is around 40,000 kilometers; from the equator to the pole is around 10,000 kilometers; and the eddies that move energy horizontally through the atmosphere span around 1000 kilometers. So, he said, you can get away with resolving to around 1000 kilometers (“they could do that in the seventies,” he added).

“But if you wanna get V,” he said, “you need two orders of magnitude. You don’t need a thousand kilometers: you need ten kilometers, because the atmosphere’s so thin.” 

An illustration of the resolution necessary for modeling horizontal heat transport versus vertical heat transport. Image courtesy of Bjorn Stevens/SC20.

This factor of 100, however, appears deceptively achievable. Factoring in the additional temporal and spatial dimensions of climate modeling, the computational requirements of calculating V relative to those of calculating H skyrocket from an increase of around 2^7… to an increase of around 2^28.

“So it’s a massively larger calculation to get V,” Stevens said, “and in 1979 you had absolutely no right to expect to get it.”


“It’s a massively larger calculation … and in 1979 you had absolutely no right to expect to get it.”


That’s Moore like it

Leaning on Moore’s Law, Stevens mused on the expectation that chip performance would double roughly every 18 months. “But really, what kind of technology has exponential growth for what seems like forever?” he asked. 

“Well, it turns out it’s your kind of technology,” he answered, presenting a graph of how computing power has boomed over the last 50-odd years. “Having exponential growth that goes on forever and ever and ever like this… is just crazy.”

Bjorn Stevens discusses Moore’s Law. Image courtesy of Bjorn Stevens/SC20.

“So you could ask yourself: well, in retrospect we had half a century of doubling. … Maybe V isn’t so impossible after all. What do we need?”

Stevens did the back-of-the-envelope math. 28 doublings (remember 2^28?); 18 months per doubling. 42 years, he concluded with a smile – though he stopped short of explicitly acknowledging the synchronicity with Hitchhiker’s Guide.

So: 42 years between when researchers reliably solved for H and when they could reliably solve for V.

1979 plus 42 years.

2021.

“Practically tomorrow,” Stevens said.

The future is now…

Tempering excitement, Stevens cautioned that while many of the tools are in place, the climate science community isn’t quite there yet – and much work remains to be done. Storms and clouds still vex researchers, and may (or may not) impose additional performance requirements beyond the expected needs. 

Climate models, he explained, require a certain resolution to be useful – roughly 100 simulated days per day at a grid resolution of roughly 1.5 kilometers. Citing his team’s current results, he said they would only need around 100 times more computing power to achieve acceptable numbers.

“That’s already there,” he said. “That’s in place. I mean, if you look at the JUWELS booster, we could do this calculation that we want, we could get the throughput that we want, but maybe we could only do it once.” Elsewhere, he added, researchers had already started to achieve the necessary resolution at regional levels. 

“Machines like Fugaku and the emergence of exascale [are] showing that not only are these calculations feasible, but they’re going to be practical.”


“Machines like Fugaku and the emergence of exascale [are] showing that not only are these calculations feasible, but they’re going to be practical.”


… but what next? And why?

Returning to his allegory, Stevens said that achieving this resolution in the exascale era was comparable to receiving that first answer from Hitchhiker’s Guide’s Deep Thought: an answer so long in the making that the question may be long forgotten by the time it is delivered. So, he explained, we needed to take that next step, asking ourselves what the questions are and ensuring that our results become useful in the world.

To do that, he suggested, we would need to diminish the barrier between computation and interaction. “The old way of interacting with machines involves experts and layers and layers of expertise,” he said. He brought up a picture of a couple of children playing with a tablet. “Here we see the future,” he said. “As brilliant as these kids probably are, they don’t know CUDA. They don’t even know Python! They probably don’t even know English! … But they’re interacting with a machine.”

This, he said, was the endgame: to take these supercomputers and “expose their information content to users who can work through the consequences of their actions, of their policies, of their imaginations, of their hypotheses.” By way of example, Stevens cited the European Union’s Green Deal, which incorporates a plan for massive Earth simulations called “digital twins” that will be run on supercomputers and which are designed to allow researchers and decision-makers to explore the results of scenarios and policies.


“The Atlantic… It looks like Van Gogh.”


Throughout most of the keynote, Stevens’ tone was that of an energetic, geeky professor: excited about the future, fascinated by the research in his field, happy to make a sci-fi reference. Toward the end of the presentation, though, his tone noticeably shifted as he brought up a satellite image of the Atlantic Ocean in mid-September of this year.

Bjorn Stevens highlights this year’s hurricane season. Image courtesy of Bjorn Stevens/SC20.

“The Atlantic… It looks like Van Gogh – the Starry Night picture – because you see swirl after swirl after swirl,” he said. “These are hurricanes, tropical storms, and pre-tropical storms, and tropical depressions – there’s eight of them, count them – eight of these storms!”

“You might see one storm, kind of cool, you look at its eye… you might see two if you’re really lucky. Once in a great while you see three. And here we have eight! Climate change? Who knows.”

A pause.

“Wouldn’t you like to know?”

“Wouldn’t want to know what we’re doing to our Earth if it’s causing things like this to happen?”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire