AI Newcomer SambaNova GA’s Product Lineup and Offers New Service

By John Russell

December 9, 2020

During the last couple of years the roll out of AI-specialized chips and systems has steadily gained steam. Today, for example, SambaNova, announced availability of its DataScale systems which are based on its ‘reconfigurable dataflow’ chip that the company says outperforms Nvidia’s A100 GPU on many, if not most AI tasks. SambaNova also announced a Dataflow-as-a-Service offering and provided more detail on its near-term market strategy.

While it’s early days for these AI tech startups, the first wave of entrants are winning deployments and bringing products to market. AWS recently announced instances based on the Habana Labs (now Intel) Gaudi chip. Cerebras, like SambaNova, has placed systems at national labs where a number of AI technology testbeds have sprung up in addition to the labs putting the chips/systems to useful work. Google’s TPU, of course, is in its fourth generation and has been in service at Google for several years. Just today, Esperanto unveiled an ML chip using RISC-V cores.

“The times, they are a changing” as Bob Dylan once wrote. The AI tech floodgates are indeed opening wide. SambaNova’s announcements mark its plunge into broader commercialization. Marshall Choy, vice president of product, provided HPCwire with a briefing. To a fair degree, SambaNova’s technology has already been widely covered. Here’s an excerpt from HPCwire coverage in the fall of Kunle Olukotun, SambaNova chief technical officer and one of three founders, describing the technology.

“We define a reconfigurable data flow architecture that’s optimized for data flow problems. So it takes these hierarchical [parallel] patterns and maps them to an architecture so they can be executed very efficiently. This is a reconfigurable architecture composed of reconfigurable compute, reconfigurable memory, and communication primitives that makes it very efficient to execute these sorts of data flow problems.

“The first incarnation of this reconfigurable dataflow architecture is the Cardinal SN10 reconfigurable data flow unit (RDU). This is implemented in TSMC seven nanometer technology and 40 billion transistors. Over 50 kilometers of wire provide all the interconnect between the different components on the chip. It provides hundreds of teraflops of compute capability, and hundreds of megabytes of memory on chip. Just as importantly, it has different direct interfaces to terabytes of memory off chip. We’ve combined these RDU chips into systems that provide scalable performance for both training and inference. We call them DataScale systems.”

A big chunk of the magic is the SambaFlow stack and compiler which does the heavy lifting of porting applications to the chip.

Said Choy, “Our compiler does what the developer has to do with other architectures like with the GPU, [where] you do a lot of kernel by kernel execution things. That’s a lot of data movement between memory and GPU and the host. What our compiler does is extract the entire graph out of the what’s running on top of the framework. It breaks that down into common semantics and operators, and then lays out that graph in its entirety onto the chip and executes in a single continuous data flow manner.

“As related to HPC applications, the SambaFlow stack has APIs not just from the PyTorch, and the framework level but also has interfaces for user graphs. We have customers who are doing things that have nothing to do with ML and frameworks. They’re running C and C++ graphs on the SambaNova – things like density functional theory, which is a workhorse workload for HPC. We have people doing finite differences type of calculations using our system and C and C++. So we’re already kind of moving into that HPC space.”

Currently, SambaNova hasn’t exposed low-level APIs to the outside world and Choy suggests the speedup provided by its standard compiler will be enough for most users.

All the systems come in racks and the current lineup includes: quarter rack (single system); half rack (two systems); and full rack (four systems) and each incudes networking and a management console. Choy said, “Part of the reason for this is that it’s how we’re able to get customers up and running very quickly. It literally ships in a rack, they literally roll the rack out and then roll it in place in the datacenter.”

“The other reason we ship it in the rack is from a customer support standpoint to avoid having to triage a bunch of local area network issues; in the past we spent a lot of time on that kind of stuff. Also, it creates a closed environment within the rack and customers are running exactly what I’m running in my labs. So when we’re doing nightly fault injection testing, and bi-weekly patch, regression testing, and all that kind of stuff, the odds are in my favor that I’ll find some things before the customers do, and can proactively address issues before it hits them in production,” he said.

SambaNova singled out the following system features:

  • SambaNova Systems SambaFlow, a complete and open software stack that provides no lock- 
in and ease of use to improve developer productivity.
  • SambaNova Reconfigurable Dataflow Unit (RDU), the industry’s next-generation processor built from the ground up to offer native dataflow processing.
  • SambaNova Systems RDU-Direct, high-speed fabric that provides a low-latency, high-bandwidth direct connection between SambaNova Systems RDUs for maximum system throughput.
  • 8-32 SambaNova Cardinal SN10 RDUTM processors per rack.

Choy said the company is currently focused on four use cases: “Natural language processing (NLP), high resolution computer vision, recommendation systems, and finally as a category of its own, we’re focusing on AI for science, which is probably a little bit of an open question, whether we’re talking about the convergence or the coexistence of HPC and AI, but it’s going to be somewhere in that realm.”

SambaNova released benchmark claims as part of its announcement all measured against Nvidia’s A100 according to Choy. The bullets here are from the official press release:

  • Performance. World record DLRM inference 7x better throughput and latency than A100. World record BERT-Large training 1.4x faster than DGX A100 systems. World record state of the art accuracy of 90.23 percent out-of-the-box for high-resolution computer vision compared to DGX A100 systems.
  • Accuracy. World record state-of-the-art accuracy of 80.46 percent for DLRM recommendation engines compared to Nvidia A100 GPUs.
  • Scale. World record BERT-Large training and state-of-the-art accuracy at multi-rack scale.
  • Ease of Use. From loading dock to datacenter, SambaNova DataScale quickly and easily integrates into any existing infrastructure running customer workloads in about 45 minutes. Download thousands of pre-trained Hugging Face Transformer models in seconds on SambaNova DataScale at state-of-the-art accuracy with no code changes required.

Nvidia, currently king of the GPU and AI hill, is the preferred marketing target for most of the young AI chip/system entrants. That’s not surprising given Nvidia’s market share. That being said, it seems like the newcomers should enter the MLPerf benchmarking efforts which Nvidia has owned. Choy downplays MLPerf arguing the expense and effort to participate are burdensome for a young company. SambaNova is a MLPerf (MLCommons) member and will likely participate in the future, he said.

The DataScale systems are network (InfiniBand and Ethernet) agnostic, said Choy, but given that Nvidia now owns Mellanox, he allowed that, “My preference is Ethernet. But we can do both. One of our strategies is to make sure things are easy to integrate. So we’re looking at everything from physical form factors and software interfaces and doing a lot of open source stuff, whether it’s PyTorch for frameworks, Kubernetes and Slurm for orchestration, Docker or Singularity for containers, or Red Hat and Ubuntu for the operating system. It’s all pretty standard stuff.”

SambaNova doesn’t so far support Slingshot or Omni-Path fabrics (now Cornelius Networks) but given its work with the national labs (Los Alamos, Lawrence Livermore, and Argonne) that could change as the need arises. It seems the tabs have generally been pleased as noted below by ANL’s Rick Stevens.

“At Argonne National Laboratory, we’re working on important research efforts including those focused on cancer, COVID-19, and many others, and using AI to automate parts of the development process is key to our success,” said Stevens, associate laboratory director at ANL. “The SambaNova DataScale architecture offers us the ability to train and infer from multiple large and small models concurrently and deliver orders of magnitude performance improvements over GPUs.”

The company also introduced Dataflow-as-a-Service today. It is being offered in three flavors, one for recommender, one for natural language processing, and one for high resolution computer vision. “This is a way for people to quickly and easily gain access to our technology, and pay for it with a cloud consumption model of monthly subscription billing. We will physically ship the system, install it behind their firewall, run it on their premises, and do the management support. That’s covered as part of the subscription,” said Choy. Pricing wasn’t disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire