IBM Touts STT MRAM Technology at IDEM 2020

By John Russell

December 15, 2020

At the IEEE International Devices Meeting being held (virtually) this week IBM is rolling key research aimed at boosting AI and hybrid cloud technology. One of the more prominent efforts showcased is IBM’s success fabbing the first 14nm node embedded Spin-Transfer-Torque (STT) MRAM (eMRAM). IBM noted the work in a blog posted yesterday.

“The circuit functionality was demonstrated with read/write tests having write pulses as short as 4 ns, and with much reduced write bias for pulse widths in the 10-20ns range. These and other performance metrics indicate great potential for this technology in mobile cache and similar applications,” write IBM researchers in a paper being presented tomorrow at the conference.

The latest demonstration is compatible with existing CMOS logic design rules according to IBM researchers Abu SebastianGriselda Bonilla, and Dan Edelstein, authors of the blog.

Initial STT-MRAM products have focused on eFlash replacement and standalone storage products. STT-MRAM also has the potential to be used as a working memory in more advanced embedded applications, including mobile cache at ~15 ns write times, and ultimately last-level cache at ~2 ns write times, reported IBM.

“However, these advanced applications have been limited by two key challenges: 1) improving MTJ performance to reduce the write currents while controlling distributions; and 2) increasing the MRAM/CMOS circuit and cell density for advanced-node scaling. Previous leading work, all at the 28nm – 22nm nodes, highlighted the challenge of integrating tight-pitch MTJs within the short vertical space available between BEOL metal levels – a challenge which has so far prevented 14nm node eMRAM from being developed,” according to the IBM paper (A 14 nm Embedded STT-MRAM CMOS Technology),” say IBM researchers in the paper. (See figures from paper below.)

IBM was able to mitigate these issues. “Using a 2Mb eMRAM macro, we achieve an integration at tight MTJ pitch (160 nm), which fits vertically between M1 and M2. This placement maximizes eMRAM circuit performance by eliminating stacked BEOL parasitics, and reduces chip size and cost by clearing upper wiring tracks for logic, and reducing total number of levels to wire large arrays (these may need n+3 Cu levels for MTJs placed on level Mn, hence the advantage of n=1). We demonstrate read and write functionality, including write performance down to 4ns, and show that the eMRAM process module can be added while maintaining the logic BEOL reliability requirements,” reported the researchers.

The blogpost noted, “Data transfer bottlenecks have long been a problem for large workloads and create a challenge for running AI workloads in hybrid cloud environments. STT-MRAM uses electron spin to store data in magnetic domains, combining the high speed of Static RAM (SRAM) and the high density of DRAM—both of which rely on electrical charges for storage—to offer a more dependable storage solution.”

IBM will further discuss the technology in a second STT-MRAM paper, “Demonstration of Narrow Switching Distributions in STT-MRAM Arrays for LLC Applications at 1x nm Node.” This work demonstrates advanced magnetic materials with high-speed of 3 ns switching and tight distributions of the switching current. “Optimizing switching speed characteristics is another key step toward use of MRAM as last-level cache. By speeding up the exchange between memory and compute, this enhanced design promises to deliver a much more efficient, higher-performing system.

“Together, these advances point to MRAM’s steady march toward achieving superior density and increased speed needed to replace SRAM for CPU caches. That would be a whole new application for MRAM, which is typically used today as either a replacement for NAND flash memory or as a stand-alone storage chip, and significantly increase data retrieval performance,” write Sebastian, Bonilla, and Edelstein.

IBM will also report advances in phase change memory:

  • The accurate mapping of synaptic weights onto analog non-volatile memory devices for deep learning inference is a considerable challenge to developing analog AI cores. Synaptic weight indicates the strength of a connection between two nodes in a neural network. In the paper, “Precision of Synaptic Weights Programmed in Phase-Change Memory Devices for Deep Learning Inference,” IBM researchers discuss how analog resistance-based memory devices such as PCM in in-memory computing applications could address the mapping challenge. Their work addresses how to accurately map the synaptic weights analytically and through array-level experiments. The paper also analyzes the impact of inaccuracy associated with synaptic weight storage on a range of networks for some common AI applications: image classification and language modeling.
  • A second analog AI paper, “Unassisted True Analog Neural Network Training Chip,” details the first analog neural network training chip—a resistive processing unit, or RPU—to demonstrate the elusive “analog advantage” in AI training. Analog advantage occurs when analog neural network training is faster than a comparable digital system in real time. The researchers achieved this speedup by performing all Multiply and Accumulate (MAC) functions in analog cross-point arrays and updating all weights in parallel.

Link to IBM blog, https://www.ibm.com/blogs/research/2020/12/iedm2020-memory-analog-ai/

Link to IEEE IDEM 2020, https://ieee-iedm.org/program/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This