IBM Touts STT MRAM Technology at IDEM 2020

By John Russell

December 15, 2020

At the IEEE International Devices Meeting being held (virtually) this week IBM is rolling key research aimed at boosting AI and hybrid cloud technology. One of the more prominent efforts showcased is IBM’s success fabbing the first 14nm node embedded Spin-Transfer-Torque (STT) MRAM (eMRAM). IBM noted the work in a blog posted yesterday.

“The circuit functionality was demonstrated with read/write tests having write pulses as short as 4 ns, and with much reduced write bias for pulse widths in the 10-20ns range. These and other performance metrics indicate great potential for this technology in mobile cache and similar applications,” write IBM researchers in a paper being presented tomorrow at the conference.

The latest demonstration is compatible with existing CMOS logic design rules according to IBM researchers Abu SebastianGriselda Bonilla, and Dan Edelstein, authors of the blog.

Initial STT-MRAM products have focused on eFlash replacement and standalone storage products. STT-MRAM also has the potential to be used as a working memory in more advanced embedded applications, including mobile cache at ~15 ns write times, and ultimately last-level cache at ~2 ns write times, reported IBM.

“However, these advanced applications have been limited by two key challenges: 1) improving MTJ performance to reduce the write currents while controlling distributions; and 2) increasing the MRAM/CMOS circuit and cell density for advanced-node scaling. Previous leading work, all at the 28nm – 22nm nodes, highlighted the challenge of integrating tight-pitch MTJs within the short vertical space available between BEOL metal levels – a challenge which has so far prevented 14nm node eMRAM from being developed,” according to the IBM paper (A 14 nm Embedded STT-MRAM CMOS Technology),” say IBM researchers in the paper. (See figures from paper below.)

IBM was able to mitigate these issues. “Using a 2Mb eMRAM macro, we achieve an integration at tight MTJ pitch (160 nm), which fits vertically between M1 and M2. This placement maximizes eMRAM circuit performance by eliminating stacked BEOL parasitics, and reduces chip size and cost by clearing upper wiring tracks for logic, and reducing total number of levels to wire large arrays (these may need n+3 Cu levels for MTJs placed on level Mn, hence the advantage of n=1). We demonstrate read and write functionality, including write performance down to 4ns, and show that the eMRAM process module can be added while maintaining the logic BEOL reliability requirements,” reported the researchers.

The blogpost noted, “Data transfer bottlenecks have long been a problem for large workloads and create a challenge for running AI workloads in hybrid cloud environments. STT-MRAM uses electron spin to store data in magnetic domains, combining the high speed of Static RAM (SRAM) and the high density of DRAM—both of which rely on electrical charges for storage—to offer a more dependable storage solution.”

IBM will further discuss the technology in a second STT-MRAM paper, “Demonstration of Narrow Switching Distributions in STT-MRAM Arrays for LLC Applications at 1x nm Node.” This work demonstrates advanced magnetic materials with high-speed of 3 ns switching and tight distributions of the switching current. “Optimizing switching speed characteristics is another key step toward use of MRAM as last-level cache. By speeding up the exchange between memory and compute, this enhanced design promises to deliver a much more efficient, higher-performing system.

“Together, these advances point to MRAM’s steady march toward achieving superior density and increased speed needed to replace SRAM for CPU caches. That would be a whole new application for MRAM, which is typically used today as either a replacement for NAND flash memory or as a stand-alone storage chip, and significantly increase data retrieval performance,” write Sebastian, Bonilla, and Edelstein.

IBM will also report advances in phase change memory:

  • The accurate mapping of synaptic weights onto analog non-volatile memory devices for deep learning inference is a considerable challenge to developing analog AI cores. Synaptic weight indicates the strength of a connection between two nodes in a neural network. In the paper, “Precision of Synaptic Weights Programmed in Phase-Change Memory Devices for Deep Learning Inference,” IBM researchers discuss how analog resistance-based memory devices such as PCM in in-memory computing applications could address the mapping challenge. Their work addresses how to accurately map the synaptic weights analytically and through array-level experiments. The paper also analyzes the impact of inaccuracy associated with synaptic weight storage on a range of networks for some common AI applications: image classification and language modeling.
  • A second analog AI paper, “Unassisted True Analog Neural Network Training Chip,” details the first analog neural network training chip—a resistive processing unit, or RPU—to demonstrate the elusive “analog advantage” in AI training. Analog advantage occurs when analog neural network training is faster than a comparable digital system in real time. The researchers achieved this speedup by performing all Multiply and Accumulate (MAC) functions in analog cross-point arrays and updating all weights in parallel.

Link to IBM blog, https://www.ibm.com/blogs/research/2020/12/iedm2020-memory-analog-ai/

Link to IEEE IDEM 2020, https://ieee-iedm.org/program/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire