OnDemand Portal Accelerates HPC Work for Academic and Industrial Users

By Linda Barney

December 21, 2020

Editor’s note: This special guest post explores the use of the OnDemand and Open OnDemand web interfaces, developed by Ohio Supercomputer Center to facilitate use of powerful HPC resources, and used by academia and industry, including NASCAR.

Historically, the HPC community has done their work via a command-line interface to enter system commands and move through files or directories, as well as run programs. To facilitate greater use of its significant computational resources, Ohio Supercomputer Center (OSC) developed OnDemand, an accessible web interface that allows anyone with OSC access to log into and use one of the OSC supercomputer clusters. With funding through the National Science Foundation (NSF), OSC created an open source version called Open OnDemand (OOD) that allows research institutions and universities to run their own instance of OnDemand. In addition, OSC created a special OnDemand portal for commercial customers called AweSim OnDemand.

OSC addresses the computational demands of academic and industrial research communities with a robust shared infrastructure. Pictured is OSC’s Dell/Intel Owens cluster.  “Owens” is the namesake of J.C. “Jesse” Owens, who won four gold medals at the 1936 Olympics.

OSC’s OnDemand high performance computing environment includes clusters based on Intel Xeon processors. Pitzer, OSC’s newest system, is an Intel Xeon processor-based cluster built by Dell. When students and customers log onto OSC OnDemand, they have access to a supercomputer capable of running large workloads with advanced processing capabilities not typically available to all users on their own computers. Running on an OSC cluster accelerates the time to insight during data analysis and lowers the cost-per-terabyte during data processing. One AweSim user, NASCAR, uses workflows developed by TotalSim to perform simulations of race cars.

According to Alan Chalker, Ph.D., director of OSC Strategic Programs, “The inspiration behind OSC’s OnDemand is two-fold: Every other technology developed web-based user interfaces so end-users could easily interact with the technology. Lack of a web-interface in HPC led to the perception that HPC work was lagging behind in ease of use. Scientists and engineers would rather spend their time advancing their disciplines than learn HPC. Many students have always used web-based graphical user interfaces (GUIs) and are not interested in spending time learning about file systems, directories, and command line entries. Developing an easy-to-use web-based interface is lowering the barrier to entry so that students, commercial clients, and government researchers have access to OSC supercomputer cluster systems.”

Making HPC Modeling and Simulation Available to Commercial Customers

Designers and engineers who use common computer-aided design (CAD) or computer-aided engineering (CAE) software on desktop computers often encounter limitations in the modeling and simulation they can efficiently perform on those systems. OSC realized that access to OnDemand would provide commercial engineering and design firms with increased power and processing speed and allow more detailed models to be created faster.

OSC worked with modeling and simulation (M&S) experts to create AweSim with M&S-as-a-service. This program provides small-to-mid-sized manufacturers (SMMs) with simulation-driven design to enhance innovation and strengthen economic competitiveness.

According to Chase Eyster,  business development manager for Ohio Supercomputer Center, “There are currently six commercial Engineering Service Providers (ESPs) with expertise in multi-physics, finite element analysis, structural/welding engineering, and computational fluid dynamics (CFD) that help a variety of AweSim clients in academic research, government non-profit as well as other commercial users. We feel like we have a very deep bench to go to for assistance to help HPC users.”

Ray Leto and Naethan Eagles, executives from TotalSim US, are part of that group of providers. “TotalSim, one of OSC OnDemand’s largest users, is an expert in CFD and Leto and Eagles have done massive amounts of work on OSC systems, help with technical issues, and create modeling and simulation workflows for use by customers,” states Eyster.

NASCAR: Using Simulations to Model and Test Race Cars

NASCAR Research and Development works with TotalSim who developed computational fluid dynamics (CFD) workflows and scripts specifically for NASCAR. Members of NASCAR technical team log into the OSC AweSim OnDemand portal to run their Computational Fluid Dynamics (CFD) simulations using the TotalSim workflows.

NASCAR uses CFD simulations running through OnDemand for a number of projects. For example, NASCAR is developing its next-generation car coming in 2022 that was aerodynamically developed in OpenFOAM open source software. NASCAR uses CFD for things that are difficult to test, including running multiple vehicles together in different configurations on a race track, testing liftoff, and developing new safety devices. NASCAR found strong correlations between CFD simulations and work with actual cars in a wind tunnel. NASCAR makes final conclusions based on work in the wind tunnel, but most of the preliminary work is based on CFD computer simulations.

NASCAR uses the ANSA pre-processing program to locally prepare the geometry and meshes used in the calculations. The information is uploaded to OSC via OnDemand. TotalSim developed a web-based tool that shows NASCAR images and, files and reduces the need to download files. NASCAR can run up to 50 separate CFD cases per day at times of heavy development, so having a web-based tool that allows the results and images to be quickly reviewed on the cluster saves data transfer time.

According to Dr. Eric Jacuzzi, NASCAR’s senior director of aerodynamics, simulation and design at NASCAR, “Running on supercomputing clusters at OSC allows us to run more simulation cases, run them more quickly, and save computer job processing time. We were originally running about 50 cases a month with 1 terabyte (TB) of storage, but we can now run 250 CFD simulations a month using 15TB of storage.

Running on the OSC Owens cluster provides NASCAR with 2,000 Intel Xeon Scalable processing cores. A single car CFD simulation run takes 6 or 7 hours to run. Simulations with multiple cars in varying positions relative to one another take 12-15 hours. These multi-car simulations of varying positions are combined together into maps that give insight into the aerodynamic effects each car exerts on the other. A typical map is around 40 different vehicle positions and takes 2.5 days to complete.

“The amount of data in each run has grown massively and is approximately 100  percent larger than runs done in the past. It would not be possible to run these CFD simulations without the use of OSC’s supercomputer clusters. Running CFD simulations on OSC clusters is a cost-effective way for NASCAR to be on the cutting edge of testing and developing car technology and which we could not afford otherwise,” states Jacuzzi.

OSC Supercomputer Cluster and OnDemand Architecture

All OSC supercomputer clusters use Intel Xeon processors, which provide high performance, advanced reliability and hardware-enhanced security optimized for demanding workloads. In addition, the clusters have GPUs, interconnects, huge memory nodes, and shared data storage. The OSC cluster architecture is able to handle the most demanding HPC modeling and simulation jobs.

Pitzer, OSC’s newest system, is a Dell-built cluster that leverages Intel Xeon Gold and Platinum processors and Nvidia V100 GPUs

OOD provides system administers with an easy-to-install web access to HPC resources, resulting in intuitive access to supercomputing. Tools include job management and monitoring applications along with graphics desktop environments and desktop applications including RStudio Server, Jupyter Notebook, Matlab, Abaqus/CAE and other tools.

An OnDemand instance can be installed at other supercomputer centers, institutions, or research centers without connecting to OSC supercomputers.

OnDemand, Open OnDemand, and AweSim OnDemand are used by a number of global institutions. As of 2019, OnDemand was used in 136 US locations and 70 international locations. OnDemand is being used in major universities, national laboratories, hospitals, and in commercial industry.

Chalker has big aspirations for Open OnDemand, “We hope it will become the default interface for accessing HPC modeling and simulation resources to lower the learning curve and broaden the base for users. The NSF eXtreme Digital (XSEDE) program leadership has a vision of making OnDemand available to XSEDE users. A single front-end XSEDE login to OnDemand would allow the user to run OnDemand on any supercomputer on the XSEDE system.”

About the Author

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training, and web design firm in Beaverton, Ore.


Header image: NASCAR race car CFD simulation running on OSC Owens supercomputer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire