Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

By John Russell

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during the past couple of years. Intel’s Optane persistent memory solution, which uses 3D XPoint hardware and DAOS software stack, is among the handful of newcomers vying for sway, and it’s been a top performer on the IO500 list which benchmarks storage system performance.

Just before the holidays, Intel released new benchmarks for its Optane persistent memory (PM) solution. A blog by Andrey Kudryavtsev, Intel SSD solution architect, and a somewhat more detailed video by Kelsey Prantis, senior software engineering manager, both argued that the Optane/DAOS combination overcomes fundamental problems presented by POSIX and traditional parallel file systems such as Lustre.

The benchmarks (more detail below) are on Intel’s second-gen Optane PM 200 with newer chips. On one common test (IOR) the PM 200 delivered a 58 percent gain versus the earlier PM 100 series. Intel released the new benchmarks roughly coincident with its Memory & Storage Moment 2020 event in mid-December where it also introduced some new products and confirmed development of the third generation of Optane PM, code-named Crow Pass. Few details on Crow Pass were provided, although Prantis mentioned it would have two more DIMMs per socket, which should further boost performance. (See HPCwire coverage of the new products introduced.)

A sore point around Optane has been its proprietary nature and Intel’s insistence that DAOS must be used with Optane PM.

Kudryavtsev wrote in his blog: “’Why is PMem required for DAOS and can’t be substituted?’ is a question I hear quite often. There are multiple reasons. Kelsey Prantis brought several of them for your consideration in her v-blog. PMem is used for the shared store of Metadata information and Small I/O tier. Metadata access is of very low granularity and is just moving away from block storage to a cache line that simplifies its operations and needs to keep an active DRAM buffer. Small I/O on the other end gets stored into PMem on writes, which is defined by the DAOS policy engine. This allows us to optimize bulk data writes to NVMe SSDs for better SSD performance (higher block size delivers better bandwidth) and SSD endurance which is also dependent on the write pattern.”

It seems like the idea is simply that DAOS is designed specifically for the Optane hardware. OK. Without a doubt, Optane has been an impressive performer. It is positioned as sitting below the DRAM main memory and above SSDs. As the name suggests, it memory is persistent, unlike DRAM (link for more on Optane technology).

In many ways DAOS is the magic sauce and Prantis’s video (~9 minutes) is a good representation of the Optane-plus-DAOS argument. Media latency and file system latency are the key speedbumps in storage with small-file handling (think metadata) and POSIX’s safety features (lockdowns) playing major roles.

Storing data takes a few steps, Prantis noted in her video: “It has to go through a process. You start with your rich structured data, that data gets serialized to a series of blocks. Then those blocks get written to the underlying media.  But when it comes to writing any sort of small IO, whether that is filesystem metadata, or that the IO itself is small, that can create a significant performance problem.

“[If] you look at block five in the traditional POSIX data storage column here (see slide below), you can see that there’s actually multiple pieces of data being stored in the same block of media. And what happens when you have multiple compute nodes as you have shared storage that are trying to access the piece of data on that same block, the software has to lock access to that block and serialize those two activities and accesses from the clients. You do that several million times across your cluster, it actually is creating a very real performance bottleneck that is limiting IO applications today,” she said.

Memory that is both persistent and byte addressable, such as in Optane, permits eliminating block-based IO.

“We take the low latency and byte addressable data access that we [now] have and built a new software stack on top of that won’t have to be constrained by block-based IO and is also able to be written to completely in user space; none of the IO or DAOS goes through the kernel. DAOS itself presents a selection of interface options to the end user such as the traditional POSIX interface of key value interfaces and even other middleware and application frameworks are able to communicate directly with DAOS as a back end,” said Prantis.

“Then DAOS will take all of those small IOs and any metadata IOs, and it stores that in the Intel Optane persistent memory, where the different clients then can byte-addressively access those pieces of data. Those actions can now happen in parallel instead of in serial, and all of your larger block-friendly IOs will still go to NVMe SSDs. And DAOS goes ahead and makes that completely transparent to the end user. This sort of architecture is really only possible because of the new hardware capabilities.”

DAOS is young and not yet widely adopted, but it has shown promise. Intel entries to the IO500 have consistently scored high, including a record-setting win in the ISC20 running of the benchmark. Intel was second on the SC20 IO500 list, ahead of WekaIO which finished third. The top performer at SC20 IO500 was an entry from Pengcheng Laboratory using MadFS distributed network file system.

Prantis also reviewed the PM 200 v PM 100 benchmarks for metadata handling and IO. The data was from pre-production testing and based largely on the hardware upgrades (chips) and without software tuning.

“For those who aren’t familiar, MD test is a common industry benchmark for measuring the metadata performance for parallel distributed file systems. As mentioned earlier, metadata and those small file IOs are where block-based interfaces really introduced the most problems. So it’s really here where we see that the persistent memory helps us shine. You can see here, right, there’s quite a bit of performance improvement. I will say there are two more DIMMs per socket with the next generation of Intel persistent memory. So we do expect to see some improvement from the additional DIMMS dims. But we also believe there is improvement due to a number of other improvements in the media as well, including things such as flash as well as some improvements to the PM software stack,” she said.

“IOR is another industry benchmark, this time focused on measuring the bandwidth for complete IOs, not just the metadata. Here we are seeing an outstanding 58% improvement in the bandwidth. Again, this is with no changes to the software, just plug and play on the new set of hardware. And at this point, we’re really reaching network saturation and expect that we should be able to see actually even more read bandwidth once we’re able to move to a 200-gig network versus the 100-gig network we used for this.”

Link to blog: https://software.intel.com/content/www/us/en/develop/articles/building-storage-right-with-daos-and-intel-optane-pmem-200.html

Link to video: https://www.youtube.com/watch?v=Luyjxb8egDc&ab_channel=DAOS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This