Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

By Tracey Bryant

January 5, 2021

Jan. 5, 2021 — What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task.

Chandrasekaran, assistant professor of computer and information sciences, recently was named the David L. Mills and Beverly J.C. Mills Career Development Chair at UD. This professorship, funded through a generous gift from David L. Mills, professor emeritus, and Beverly J.C. Mills, a UD alumna, was created to reward exceptional young female faculty in the departments of electrical and computer engineering or computer and information sciences.

For the past year, Chandrasekaran has been leading one of eight teams working on applications for the new Frontier supercomputer being built within the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) in Tennessee. This exascale computer, capable of performing a mind-boggling quintillion calculations per second — that’s a 1 with 18 zeros after it (1,000,000,000,000,000,000) — is expected to launch in 2021. It will be at least five times faster than ORNL’s current supercomputer, Summit, which was the world’s fastest supercomputer until Japan’s Fugaku came online this past summer.

University of Delaware Prof. Sunita Chandrasekaran is leading an international team designing an application for the Frontier exascale supercomputer, now being built at Oak Ridge National Laboratory. Photo courtesy of Sunita Chandrasekaran

Chandrasekaran’s team is working with a plasma physics application called PIConGPU (Particle in Cell), which can simulate interactions between lasers and matter. Enlisting Frontier’s massive computing power, the team is working to generate fast, predictive simulations for next-generation plasma (particle) accelerators. Such tools are critical to advancing radiation therapies for cancer, as well as expanding the use of X-rays to probe the structure of materials.

Her collaborators have had high praise for the team effort.

“Dr. Chandrasekaran’s PIConGPU team is an elite group spanning many geographic regions, scientific domains and backgrounds,” said Dr. Nicolas Malaya, technical lead from Advanced Micro Devices (AMD) for the Exascale Centers of Excellence. “I fully expect this application to generate important scientific results from this team in computational science, supercomputing and plasma physics.”

Dr. Michael Bussmann, head of the Center for Advanced Systems Understanding (CASUS) at HZDR, a research laboratory based in Germany, added: “Together with the University of Delaware and our partners at Helmholtz-Zentrum Dresden-Rossendorf, CASUS scientists are working at the frontier of high performance computing. Our solutions will enable realistic simulations for next generation particle accelerators based on plasma technologies.”

UDaily, a publication of the University of Delaware, recently connected with Chandrasekaran for an update on the team’s work.

Q: How is the project going?

Chandrasekaran: Pretty fantastic. We are thrilled to have gotten access to the new AMD Instinct MI100 accelerator cards from AMD. We ran the full PIConGPU on these newly released cards, and in our studies using a single GPU, we observed a 1.4 times increase in speed compared to MI60. This is promising and gives us a lot to look forward to, for the next-generation CPUs and GPUs for Frontier.

The team is using accelerator cards like this from Advanced Micro Devices (AMD) to speed the processing of plasma simulations and perform other intensive calculations. Photo courtesy AMD.

Q: Speaking of CPUs and GPUs, how do you describe the basic differences between them? 

Chandrasekaran: In general, CPUs, or central processing units, are the workhorses of computing systems. In the recent past, these systems have been upgraded with GPUs — graphic processing units — which were first used in gaming applications but are now mainstream in high-performance computing, big data and analytics kind of problems. Let’s take painting as an analogy. While painting with watercolors is just fine, imagine using gouache to enhance certain portions of your painting — now those areas have an opaque, matte-like finish, where the brush strokes are not visible anymore and overall the painting looks more vibrant and crisp. Watercolor is your CPU and gouache is your GPU.

Q: In looking at these two supercomputing titans, how do you compare Frontier’s speed to Summit’s? 

Chandrasekaran: Chatting with my collaborator, Dr. Alexander Debus at HZDR, helped me make some observations — simulations like ours with PIConGPU that would take two months on Summit might end up taking one week on Frontier. This also means we would now be able to run several 10-million time-step simulations on Frontier (each time step would take ~50 milliseconds). Time-step simulations allow us to analyze the operation of the computer’s power system from hour-to-hour intervals, right down to thousandths of a second.

Q: Who are your collaborators and what is it like coalescing an international team?

Chandrasekaran: My collaborators are from ORNL, HZDR, CASUS, and the Georgia Institute of Technology. I have not met half of my team in person, yet it feels like we have been working together for years. We are now a small family. Please see this webpage for details.

Once every few months, we make sure to discuss the team’s, as well the project’s common vision and goals to ensure the short- and long-term goals align well with CAAR deliverables. This is particularly important for an international team like ours. Most of the conversations and discussions are hashed out over email/Slack prior to scheduling a group phone call, given that there are more than a few hours of time difference between the U.S. and Germany.

Q: What is the most exciting/rewarding aspect of the project for you?

Chandrasekaran: I believe it is the interdisciplinary component of this project. It is intriguing to think about applying computer science concepts to a real-world scientific application. I am also thrilled that our close collaborations have led to this project being funded by Dr. Michael Bussmann (CASUS at HZDR, Germany). This is my first internationally funded collaborative project.

Q: What are the areas where Frontier is poised to have the greatest impact? Do you expect Frontier to help advance future virus research, for example?

Chandrasekaran: I believe so, especially when we are in the phase of integrating high-performance computing (HPC), artificial intelligence (AI) and data science. Large-scale (and fast) simulations that couldn’t be imagined just a few years ago are now going to become possible with the massive compute resources that Frontier is going to offer. Not just virus research, but such compute capabilities are of paramount importance to studies like finding a cure for Alzheimer’s disease or studying climate change.

Q: Has COVID-19 impacted your work? 

Chandrasekaran: It definitely has. Since March, life has been different. I miss running down to my Computational and Research Programming Lab and having a face-to-face conversation with my students. We all miss our in-person group meetings. The pandemic has taught us what “not” to take for granted. Having said that, no matter how exhausting day-to-day life has become, I am still grateful to Zoom, Slack and other modes of communication that help me stay in touch with my research group. We are clearly re-inventing newer ways to communicate and do research.

Q: How are UD students contributing to the effort?

Chandrasekaran: My Ph.D. student, Matt Leinhauser, has been working on this project since its inception. With mentorship from myself and my CAAR team (especially Rene Widera, Sergei Bastrakov and former CAAR liaison Ronnie Chatterjee), Matt has been able to put together two technical documents on profilers — these are tools that identify portions in the computer program that take the most computation time.  We have so far used NVIDIA’s nvprof and Nsight profiler tools to dive deeper into the code. HZDR also invited Matt to spend last winter (January 2020) with them, which was a rewarding opportunity when he was still in his first year of the Ph.D. program.

Q: What’s on the horizon?

Chandrasekaran: With support from the Frontier Center of Excellence team, we will be marching forward to port PIConGPU on the early access systems and preparing the application for Frontier, which is being built as we speak. As next steps, we will be working on optimizing PIConGPU on the early access systems and speeding up the simulations even further.

This simulation on Oak Ridge National Laboratory’s Summit supercomputer demonstrates the principle of Laser Wakefield Electron Acceleration, where a laser pulse is introduced to form an electron plasma wave. Shown at left: Electric, magnetic and current density fields are colored in red, yellow and green, respectively. At right: The density of electrons being accelerated. Courtesy of Benjamin Hernandez (OLCF) and Richard Pausch and Felix Meyer (HZDR).

Source: Tracey Bryant, University of Delaware (link)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire