Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

By Tracey Bryant

January 5, 2021

Jan. 5, 2021 — What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task.

Chandrasekaran, assistant professor of computer and information sciences, recently was named the David L. Mills and Beverly J.C. Mills Career Development Chair at UD. This professorship, funded through a generous gift from David L. Mills, professor emeritus, and Beverly J.C. Mills, a UD alumna, was created to reward exceptional young female faculty in the departments of electrical and computer engineering or computer and information sciences.

For the past year, Chandrasekaran has been leading one of eight teams working on applications for the new Frontier supercomputer being built within the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) in Tennessee. This exascale computer, capable of performing a mind-boggling quintillion calculations per second — that’s a 1 with 18 zeros after it (1,000,000,000,000,000,000) — is expected to launch in 2021. It will be at least five times faster than ORNL’s current supercomputer, Summit, which was the world’s fastest supercomputer until Japan’s Fugaku came online this past summer.

University of Delaware Prof. Sunita Chandrasekaran is leading an international team designing an application for the Frontier exascale supercomputer, now being built at Oak Ridge National Laboratory. Photo courtesy of Sunita Chandrasekaran

Chandrasekaran’s team is working with a plasma physics application called PIConGPU (Particle in Cell), which can simulate interactions between lasers and matter. Enlisting Frontier’s massive computing power, the team is working to generate fast, predictive simulations for next-generation plasma (particle) accelerators. Such tools are critical to advancing radiation therapies for cancer, as well as expanding the use of X-rays to probe the structure of materials.

Her collaborators have had high praise for the team effort.

“Dr. Chandrasekaran’s PIConGPU team is an elite group spanning many geographic regions, scientific domains and backgrounds,” said Dr. Nicolas Malaya, technical lead from Advanced Micro Devices (AMD) for the Exascale Centers of Excellence. “I fully expect this application to generate important scientific results from this team in computational science, supercomputing and plasma physics.”

Dr. Michael Bussmann, head of the Center for Advanced Systems Understanding (CASUS) at HZDR, a research laboratory based in Germany, added: “Together with the University of Delaware and our partners at Helmholtz-Zentrum Dresden-Rossendorf, CASUS scientists are working at the frontier of high performance computing. Our solutions will enable realistic simulations for next generation particle accelerators based on plasma technologies.”

UDaily, a publication of the University of Delaware, recently connected with Chandrasekaran for an update on the team’s work.

Q: How is the project going?

Chandrasekaran: Pretty fantastic. We are thrilled to have gotten access to the new AMD Instinct MI100 accelerator cards from AMD. We ran the full PIConGPU on these newly released cards, and in our studies using a single GPU, we observed a 1.4 times increase in speed compared to MI60. This is promising and gives us a lot to look forward to, for the next-generation CPUs and GPUs for Frontier.

The team is using accelerator cards like this from Advanced Micro Devices (AMD) to speed the processing of plasma simulations and perform other intensive calculations. Photo courtesy AMD.

Q: Speaking of CPUs and GPUs, how do you describe the basic differences between them? 

Chandrasekaran: In general, CPUs, or central processing units, are the workhorses of computing systems. In the recent past, these systems have been upgraded with GPUs — graphic processing units — which were first used in gaming applications but are now mainstream in high-performance computing, big data and analytics kind of problems. Let’s take painting as an analogy. While painting with watercolors is just fine, imagine using gouache to enhance certain portions of your painting — now those areas have an opaque, matte-like finish, where the brush strokes are not visible anymore and overall the painting looks more vibrant and crisp. Watercolor is your CPU and gouache is your GPU.

Q: In looking at these two supercomputing titans, how do you compare Frontier’s speed to Summit’s? 

Chandrasekaran: Chatting with my collaborator, Dr. Alexander Debus at HZDR, helped me make some observations — simulations like ours with PIConGPU that would take two months on Summit might end up taking one week on Frontier. This also means we would now be able to run several 10-million time-step simulations on Frontier (each time step would take ~50 milliseconds). Time-step simulations allow us to analyze the operation of the computer’s power system from hour-to-hour intervals, right down to thousandths of a second.

Q: Who are your collaborators and what is it like coalescing an international team?

Chandrasekaran: My collaborators are from ORNL, HZDR, CASUS, and the Georgia Institute of Technology. I have not met half of my team in person, yet it feels like we have been working together for years. We are now a small family. Please see this webpage for details.

Once every few months, we make sure to discuss the team’s, as well the project’s common vision and goals to ensure the short- and long-term goals align well with CAAR deliverables. This is particularly important for an international team like ours. Most of the conversations and discussions are hashed out over email/Slack prior to scheduling a group phone call, given that there are more than a few hours of time difference between the U.S. and Germany.

Q: What is the most exciting/rewarding aspect of the project for you?

Chandrasekaran: I believe it is the interdisciplinary component of this project. It is intriguing to think about applying computer science concepts to a real-world scientific application. I am also thrilled that our close collaborations have led to this project being funded by Dr. Michael Bussmann (CASUS at HZDR, Germany). This is my first internationally funded collaborative project.

Q: What are the areas where Frontier is poised to have the greatest impact? Do you expect Frontier to help advance future virus research, for example?

Chandrasekaran: I believe so, especially when we are in the phase of integrating high-performance computing (HPC), artificial intelligence (AI) and data science. Large-scale (and fast) simulations that couldn’t be imagined just a few years ago are now going to become possible with the massive compute resources that Frontier is going to offer. Not just virus research, but such compute capabilities are of paramount importance to studies like finding a cure for Alzheimer’s disease or studying climate change.

Q: Has COVID-19 impacted your work? 

Chandrasekaran: It definitely has. Since March, life has been different. I miss running down to my Computational and Research Programming Lab and having a face-to-face conversation with my students. We all miss our in-person group meetings. The pandemic has taught us what “not” to take for granted. Having said that, no matter how exhausting day-to-day life has become, I am still grateful to Zoom, Slack and other modes of communication that help me stay in touch with my research group. We are clearly re-inventing newer ways to communicate and do research.

Q: How are UD students contributing to the effort?

Chandrasekaran: My Ph.D. student, Matt Leinhauser, has been working on this project since its inception. With mentorship from myself and my CAAR team (especially Rene Widera, Sergei Bastrakov and former CAAR liaison Ronnie Chatterjee), Matt has been able to put together two technical documents on profilers — these are tools that identify portions in the computer program that take the most computation time.  We have so far used NVIDIA’s nvprof and Nsight profiler tools to dive deeper into the code. HZDR also invited Matt to spend last winter (January 2020) with them, which was a rewarding opportunity when he was still in his first year of the Ph.D. program.

Q: What’s on the horizon?

Chandrasekaran: With support from the Frontier Center of Excellence team, we will be marching forward to port PIConGPU on the early access systems and preparing the application for Frontier, which is being built as we speak. As next steps, we will be working on optimizing PIConGPU on the early access systems and speeding up the simulations even further.

This simulation on Oak Ridge National Laboratory’s Summit supercomputer demonstrates the principle of Laser Wakefield Electron Acceleration, where a laser pulse is introduced to form an electron plasma wave. Shown at left: Electric, magnetic and current density fields are colored in red, yellow and green, respectively. At right: The density of electrons being accelerated. Courtesy of Benjamin Hernandez (OLCF) and Richard Pausch and Felix Meyer (HZDR).

Source: Tracey Bryant, University of Delaware (link)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Watch Nvidia’s GTC21 Keynote with Jensen Huang Livestreamed Here, Monday at 8:30am PT

April 9, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Argonne Supercomputing Supports Caterpillar Engine Design

April 8, 2021

Diesel fuels still account for nearly ten percent of all energy-related U.S. carbon emissions – most of them from heavy-duty vehicles like trucks and construction equipment. Energy efficiency is key to these machines, Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new training and inference servers that will power the upcoming Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

What’s New in HPC Research: Tundra, Fugaku, µHPC & More

April 6, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

RIKEN’s Ongoing COVID Research Includes New Vaccines, New Tests & More

April 6, 2021

RIKEN took the supercomputing world by storm last summer when it launched Fugaku – which became (and remains) the world’s most powerful supercomputer – ne Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

AI Systems Summit Keynote: Brace for System Level Heterogeneity Says de Supinski

April 1, 2021

Heterogeneous computing has quickly come to mean packing a couple of CPUs and one-or-many accelerators, mostly GPUs, onto the same node. Today, a one-such-node system has become the standard AI server offered by dozens of vendors. This is not to diminish the many advances... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire