Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

By John Russell

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. In 2020, the number of downloads jumped 87 percent to more than 24 million (2020 v. 2019) and the number of available packages rose 73 percent to roughly 4800. Last year (2019 v. 2018) the number of downloads jumped 77 percent. In the most recent TIOBE index, Julia jumped from #47 to #23 and TIOBE CEO Paul Jansen said Julia is the top candidate to jump into the top 20 (used languages) next year.

Julia is hot.

One prominent Julia user, Rick Stevens, associate director of Argonne National Laboratory, told HPCwire, “I saw the 87 percent increase and think it is wonderful to see Julia growing. I think that Julia has great potential to replace C/C++/Python (and of course Fortran) in scientific and technical computing as it matures. The low level performance is excellent. It will be important for it to be adopted as a first-class target language by CPU/GPU vendors.”

Launched roughly in the 2012 timeframe by four computer scientists including Alan Edelman of MIT, the number of Julia users has more than doubled in the past three years. Julia was intended to provide a powerful but easier-to-use programming language for scientific computing. Julia is a dynamic language and the tension between the high performance delivered by so-called static programming languages and the lesser performance delivered by high-level dynamic programming languages, which emphasize abstraction, speed of development, and portability, hasn’t gone away.

Edelman, who won the 2019 IEEE Sidney Fernbach Award, in part for his work on Julia, argued in his SC19 Fernbach talk that convenience with sufficient performance is winning out in the programming wars. Moreover, the rise of heterogeneous computing and the complications it presents to programmers, he said, has increased the tilt away from static programming towards dynamic languages. Here’s a brief snippet from his SC2019 talk:

“When you’re writing various algorithms, you don’t necessarily want to think about whether you’re on a GPU, or whether you’re on a distributed computer. You don’t necessarily want to think about how you’ve implemented the specific data structure. What you want to do is talk about what you want to compute, not how you want to compute it, right? That is the big problem, to get people to talk about what you want to compute, and not how you want to compute it. Because if you put in your software, how you’re going to compute it, and if your software is filled with that muck, I promise you, nobody’s ever going to change it. No one’s going to innovate on it. When the person who wrote it is no longer in the project, no one’s ever going to touch it.

“[S]ome of the reasons why Julia is working very well is because we have particularly well-designed abstractions. We have something called multiple dispatch and we have a very careful balance between the static and dynamic. It interfaces with LLVM. It plays nicely with Python. We also have had lots of people take legacy codes in MPI, and plug them into Julia – you don’t get all the benefits, but what you do have, which might be the most important benefit, is other people can now run your code once it’s inside of Julia. So it’s much easier for other people. You can actually give your old code new life when you plug it into a higher level language.”

During his talk, Edelman presented an example in which a group of researchers decided to scrap their legacy climate code in Fortran and write it from scratch in Julia. There was some discussion around performance tradeoffs they might encounter in the move to a high level programming language. The group was willing to accept a 3x slowdown for the flexibility of the language. Instead, said Edelman, the switch produced 3x speedup. (See HPCwire coverage of Edelman’s talk, Julia Programming’s Dramatic Rise in HPC and Elsewhere)

The Julia organization hasn’t been shy about tackling the perceived performance shortcomings of dynamic versus static languages. Here’s an excerpt from Julia’s introductory documentation on performance and differentiation from other dynamic languages:

“Scientific computing has traditionally required the highest performance, yet domain experts have largely moved to slower dynamic languages for daily work. We believe there are many good reasons to prefer dynamic languages for these applications, and we do not expect their use to diminish. Fortunately, modern language design and compiler techniques make it possible to mostly eliminate the performance trade-off and provide a single environment productive enough for prototyping and efficient enough for deploying performance-intensive applications. The Julia programming language fills this role: it is a flexible dynamic language, appropriate for scientific and numerical computing, with performance comparable to traditional statically-typed languages.

“Because Julia’s compiler is different from the interpreters used for languages like Python or R, you may find that Julia’s performance is unintuitive at first. If you find that something is slow, we highly recommend reading through the Performance Tips section before trying anything else. Once you understand how Julia works, it’s easy to write code that’s nearly as fast as C.

“Julia features optional typing, multiple dispatch, and good performance, achieved using type inference and just-in-time (JIT) compilation, implemented using LLVM. It is multi-paradigm, combining features of imperative, functional, and object-oriented programming. Julia provides ease and expressiveness for high-level numerical computing, in the same way as languages such as R, MATLAB, and Python, but also supports general programming. To achieve this, Julia builds upon the lineage of mathematical programming languages, but also borrows much from popular dynamic languages, including LispPerlPythonLua, and Ruby.

“The most significant departures of Julia from typical dynamic languages are:

  • The core language imposes very little; Julia Base and the standard library are written in Julia itself, including primitive operations like integer arithmetic
  • A rich language of types for constructing and describing objects, that can also optionally be used to make type declarations
  • The ability to define function behavior across many combinations of argument types via multiple dispatch
  • Automatic generation of efficient, specialized code for different argument types
  • Good performance, approaching that of statically-compiled languages like C”

A Julia user survey conducted last June provides a snapshot of the Julia user community and many of its feature preference and practices. It’s based on 2,565 interviews. Currently most users (60%) work in academia but there is a growing push to expand Julia in industry. Within industry, the biggest user segments are software/IT professionals (12%) and engineering (11%).

Interestingly, only about half of the Julia currently use hardware accelerators now, although that number is growing. Julia is also not widely used in the cloud. Currently Julia programs are run mostly on local clusters.

Performance, ease-of-use, and the open source nature of Julia were top choices for popular technical features. No surprise, the lack of licensing fees was the top non-tech feature. Among top technical challenges cited were slow compile times and the relative immaturity of packages. Juno and VS Code with Julia plug-in were top rates editors for 2020.

At JuliaCon held (virtually) in late July, one particularly active BOF tackled efforts to have industry share code with the Julia community. Greater involvement of industry seems generally seems to be on Julia’s agenda and represents another step towards building its popularity. There’s a recap of JuliaCon posted on the Julia website.

It will be interesting to monitor Julia’s traction going forward; making it into the top 20 of the TIOBE Index next year would be a strong indicator.

Slides source: Julia June 2020 survey: https://julialang.org/assets/2020-julia-user-developer-survey.pdf

2020 stats source: Julia newsletter, https://juliacomputing.com/blog/2021/01/newsletter-january/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire