Microsoft Develops Cryo-Controller Chip – Gooseberry – for Quantum Computing

By John Russell

January 28, 2021

Researchers from Microsoft and the University of Sydney, Australia, have reported developing a cryo-controller chip – named Gooseberry – and subsystem for quantum computing devices. Their work, published in Nature Electronics this month, tackles the tricky challenge of how best to control qubits which must typically be housed at near-zero (K) temperatures inside dilution refrigerators.

The current practice is to cram coaxial cables from a room temperature environment housing the control electronics into the dilution refrigerator to the quantum processor, literally connecting one cable to each qubit. Not only is this unwieldy and chancy – a broken cable connection turned Google’s 54-qubit device into a 53-qubit system during its work to demonstrate quantum supremacy – but also it limits the scalability of quantum computers generally.

Accommodating 50 or so qubits, which represents the top end of NISQ (noisy intermediate-scale quantum) computers today, is one thing; packing in hundred, thousands, or even more cables necessary to scale up to implement fully error-corrected quantum devices is quite another task. Microsoft isn’t the only company to tackle cryo-controllers. Intel has also developed a cryo-controller chip – Horse Ridge 2 – targeting use with its CMOS quantum dot spin qubit technology (see HPCwire coverage).

The Microsoft work also is CMOS-based, which the researchers note should allow scaling up. Among other things, the researchers implemented an effective heat dissipation scheme so the CMOS chip could be in close proximity to the qubits (quantum chip) without disrupting the fragile quantum states on which quantum computing depends. Microsoft tested the chip on a CMOS-based silicon dot quantum processor; it is investigating several qubit technologies and has received most notice for work on so-called topological qubits based on Marjorana particles, which if it works, would eliminate many error correction issues.

In their paper (A cryogenic CMOS chip for generating control signals for multiple qubits), the researchers write:

“Our CMOS chip is a 2.5 mm X 2.5 mm integrated circuit with around 100,000 transistors. A serial peripheral interface (SPI), which consists of four low-bandwidth wires connected at room temperature, is used to provide the digital instructions (input signals) to the chip. These input signals are handled by the digital logic of an on-chip finite state machine (FSM), which then configures 32 analog blocks, each of which can be used to control a single gate of a qubit. These analog circuit blocks – termed charge-lock fast-gate (CLFG) cells – use the low leakage of the transistors at cryogenic temperatures to store and shuffle charge between the floating capacitors to generate the dynamic voltage signals for manipulating qubits.

“Compared with a direct connection to room temperature or 4K via cable, moving the stored charge between on-chip capacitors consumes significantly less power and has a smaller footprint of 100 micrometers X 100 micrometers for a single CLFG cell. We benchmark this architecture on a GaAs few-electron quantum dot (QD) device…[The] results suggest that complex circuits based on CMOS technology can be designed to operate near 100mK and can potentially provide a scalable platform for controlling the large number of qubits needed to realize quantum applications.”

There’s also an account of the work in a Microsoft research blog by Chetan Nayak posted yesterday. Here’s an excerpt:

“Microsoft Quantum researchers are playing the long game, using a holistic approach to aim for quantum computers at the larger scale needed for applications with real impact. Aiming for this bigger goal takes time, forethought, and a commitment to looking toward the future. In that context, the challenge of controlling large numbers of qubits looms large, even though quantum computing devices with thousands of qubits are still years in the future.

“Enter the team of Microsoft and University of Sydney researchers, headed by Dr. David Reilly, who have developed a cryogenic quantum control platform that uses specialized CMOS circuits to take digital inputs and generate many parallel qubit control signals—allowing scaled-up support for thousands of qubits—a leap ahead from previous technology. The chip powering this platform, called Gooseberry, resolves several issues with I/O in quantum computers by operating at 100 milliKelvin (mK) while dissipating sufficiently low power so that it does not exceed the cooling power of a standard commercially-available research refrigerator at these temperatures. This sidesteps the otherwise insurmountable challenge of running thousands of wires into a fridge.”

Shown below are a pair of figures from the paper.

 

Qubit control is one of the thornier obstacles for modern quantum computers requiring low temperature environments. The Microsoft work as well as Intel’s is significant. Many observers think it will take systems with millions of qubits to implement wide-spread practical quantum computing. Many efforts are underway to find ways to scale up. IBM, for example, has announced a project – Goldeneye – to develop a 10-foot-tall and 6-foot-wide “super-fridge” able to house a million-qubit system.

One wonders whether Intel, traditionally a component supplier, might supply versions of its cryo-controller chip to the emerging quantum computer systems market. Intel is also working on CMOS-based, quantum dot technology for use as qubits. Microsoft’s quantum foray is interesting in that it is exploring various qubit technologies. Noteworthy, Microsoft Azure offer Azure Quantum, a portal that provides access to several quantum computers from different vendors plus various tools.

Link to Nature Electronic paper: https://www.microsoft.com/en-us/research/publication/a-cryogenic-cmos-chip-for-generating-control-signals-for-multiple-qubits/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire