Think Big: IBM Shows Ambitious Roadmap for Quantum Computing Ecosystem

By John Russell

February 4, 2021

IBM today laid out a more detailed roadmap for bringing quantum computing to practical usefulness. Last fall, IBM spelled out its hardware plans. Today, it spelled out its software ecosystem plans including, among other things, new tools and cloud initiatives. Perhaps wisely, IBM still injected a note of caution regarding quantum computing’s near-term prospects.

Writing in a IBM research blog today, IBM’s Karl WehdenIsmael Faro, and Jay Gambetta, said, “Quantum computing is on the verge of sparking a paradigm shift. Software reliant on this nascent technology, one rooted in the physical laws of nature, could soon revolutionize computing forever. Bear in mind, however, that it took classical computing many decades to go from individually programmed logic gates to the sophisticated cloud-based services of today—and we hope to see quantum computing take that same leap in just a few short years. We think we can get there, but we can’t take this leap alone.”

The hardware roadmap released in the fall outlined IBM’s planned path to 1000-qubit machines, including named systems, and description of a giant dilution refrigerator project named Golden Eye that would be able to house a million qubits. (See HPCwire coverage, IBM’s Quantum Race to One Million Qubits.) IBM’s Eagle quantum system (127 qubits) is due in 2021 with Osprey (433 qubits in 2022) and Condor (1,000 qubits in 2023) to follow.

It’s a bold plan, but not without a few skeptics. That said, it embodies IBM’s belief that practical quantum computing is closer, perhaps, than many expect. Today’s roadmap, delivered with a blog and video, tackles the software side. In a chart describing the roadmap, IBM layers expected advances for software development on top of its hardware plans (see below).

“Our Development Roadmap serves to give each developer segment the tools they need to produce the best circuits, algorithms, and models, while maximizing the opportunities for collaboration. We are increasing the variety of circuits and the capacity of our systems to run more circuits more quickly, while developing a platform where quantum developers can work seamlessly in the same integrated cloud-based framework,” wrote Wehden (pre-sales and client success director), Faro (distinguished engineer and tech lead), and Gambetta (IBM Fellow and VP quantum).

“Workloads with both quantum and classical components will not be constrained by origin or the nature of integration, and the hybrid cloud will allow these workloads to run everywhere that our cloud native systems run today and in the future.

“Today, we’re making crucial updates for quantum kernel developers writing code at the lowest level, for whom we’ve been focusing on developing circuit APIs. This year, we plan to release the Qiskit runtime—an execution environment that increases the capacity to run more circuits at a much faster rate than ever before, and with the capability to store quantum programs so other users can run them as a service. The Qiskit runtime rethinks the classical-quantum workload so that programs will be uploaded and executed on classical hardware located beside quantum hardware, slashing latencies emerging from communication between the user’s computer and the quantum processor,” they wrote.

IBM says these, and other improvements, “will lead to a 100x speedup in workloads that exploit iterative circuit execution, which will allow our quantum systems to run jobs in just a few hours that, today, can take months.”

The devil, of course, is in the details. The blog and video are worth perusing. Broadly, the conversation around quantum computing has spread and gained volume in recent months as government efforts (money) and the number of nascent quantum technology companies have mushroomed.

“By 2023, we expect to offer entire families of pre-built runtimes tailored to these domains, callable from a cloud-based API using a variety of common development frameworks. At this point, we think the foundations laid down by quantum kernel and algorithm developers will allow model and enterprise developers to explore quantum computing models on their own without having to think about the quantum physics. Developers will have the freedom to enrich systems built in any cloud-native hybrid runtime, language, and common programming framework, or integrate quantum components simply into any business workflow,” according to the blog.

From here to there seems like a long way technologically if not in time. The growing frenzy of research into varying qubit technologies, qubit control mechanisms, software tools, and underlying applications make it hard to predict winners and losers. The semiconductor-based superconducting qubit technology IBM has bet on is probably the most advanced. Ion trap and cold atom technologies are also gaining strength and recent work in optical approaches, led by the network community, is promising.

Developing a software ecosystem able to deal with diverse underlying qubit technologies while presenting a high enough abstraction layer to software developers to make their jobs easier would be a huge step forward.

As part of its announcements today, IBM also highlighted the Unitary Fund, a non-profit seeking to develop the ecosystem. IBM is a member. Here’s an excerpt from the Unitary Fund website

“We do two main things:

  • We run a microgrant program. We fund explorers across the world to work on quantum technologies. Do you have an idea for a project? Apply for a microgrant. More details are in our FAQ. Check out our previous grants.
  • We do our own research on projects that help the ecosystem as a whole. For example, we are developing mitiq, an open source compiler for error-mitigated quantum programming.

“Our grant program gives $4k cash grants for projects that help develop the quantum technology ecosystem. This could be open source quantum software, educational materials and workshops, a new quantum sensor prototype, or much more.”

The Unitary Fund lists its sponsors as: IBM, Alphabet X, Microsoft, Cambridge Quantum Computing, Rigetti, Xanadu, Zapata Computing, QCWare,  quantumcomputing.com, Strangeworks, PLOS, Steve Willis & NYC QuantumMeetup, EeroQ, John Hering, Jeff Cordova, Nima Alidoust, Travis Humble, Will Zeng

Link to IBM blog: https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap/

Link to IBM video: https://www.youtube.com/watch?v=bp7UFdtwdTw

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the global stage. Now, the Mohammed VI Polytechnic University (U Read more…

By Oliver Peckham

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

February 25, 2021

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply over Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing system, called "Wisteria/BDEC-01," that will tackle simulati Read more…

By Tiffany Trader

President Biden Signs Executive Order to Review Chip, Other Supply Chains

February 24, 2021

U.S. President Biden signed an executive order late today calling for a 100-day review of key supply chains including semiconductors, large capacity batteries, pharmaceuticals, and rare-earth elements. The scarcity of ch Read more…

By John Russell

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

AWS Solution Channel

Introducing AWS HPC Tech Shorts

Amazon Web Services (AWS) is excited to announce a new videos series focused on running HPC workloads on AWS. This new video series will cover HPC workloads from genomics, computational chemistry, to computational fluid dynamics (CFD) and more. Read more…

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

IBM’s Prototype Low-Power 7nm AI Chip Offers ‘Precision Scaling’

February 23, 2021

IBM has released details of a prototype AI chip geared toward low-precision training and inference across different AI model types while retaining model quality within AI applications. In a paper delivered during this year’s International Solid-State Circuits Virtual Conference, IBM... Read more…

By George Leopold

IBM Continues Mainstreaming Power Systems and Integrating Red Hat in Pivot to Cloud

February 23, 2021

As IBM continues its massive pivot to the cloud, its Power-microprocessor-based products are being mainstreamed and realigned with the corporate-wide strategy. Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

ENIAC at 75: Celebrating the World’s First Supercomputer

February 15, 2021

With little fanfare, today’s computer revolution was arguably born and announced through a small, innocuous, two-column story at the bottom of the front page of The New York Times on Feb. 15, 1946. In that story and others, the previously classified project, ENIAC... Read more…

By Todd R. Weiss

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

By Todd R. Weiss

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

MIT Makes a Big Breakthrough in Nonsilicon Transistors

December 10, 2020

What if Silicon Valley moved beyond silicon? In the 80’s, Seymour Cray was asking the same question, delivering at Supercomputing 1988 a talk titled “What’s All This About Gallium Arsenide?” The supercomputing legend intended to make gallium arsenide (GaA) the material of the future... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire