Think Big: IBM Shows Ambitious Roadmap for Quantum Computing Ecosystem

By John Russell

February 4, 2021

IBM today laid out a more detailed roadmap for bringing quantum computing to practical usefulness. Last fall, IBM spelled out its hardware plans. Today, it spelled out its software ecosystem plans including, among other things, new tools and cloud initiatives. Perhaps wisely, IBM still injected a note of caution regarding quantum computing’s near-term prospects.

Writing in a IBM research blog today, IBM’s Karl WehdenIsmael Faro, and Jay Gambetta, said, “Quantum computing is on the verge of sparking a paradigm shift. Software reliant on this nascent technology, one rooted in the physical laws of nature, could soon revolutionize computing forever. Bear in mind, however, that it took classical computing many decades to go from individually programmed logic gates to the sophisticated cloud-based services of today—and we hope to see quantum computing take that same leap in just a few short years. We think we can get there, but we can’t take this leap alone.”

The hardware roadmap released in the fall outlined IBM’s planned path to 1000-qubit machines, including named systems, and description of a giant dilution refrigerator project named Golden Eye that would be able to house a million qubits. (See HPCwire coverage, IBM’s Quantum Race to One Million Qubits.) IBM’s Eagle quantum system (127 qubits) is due in 2021 with Osprey (433 qubits in 2022) and Condor (1,000 qubits in 2023) to follow.

It’s a bold plan, but not without a few skeptics. That said, it embodies IBM’s belief that practical quantum computing is closer, perhaps, than many expect. Today’s roadmap, delivered with a blog and video, tackles the software side. In a chart describing the roadmap, IBM layers expected advances for software development on top of its hardware plans (see below).

“Our Development Roadmap serves to give each developer segment the tools they need to produce the best circuits, algorithms, and models, while maximizing the opportunities for collaboration. We are increasing the variety of circuits and the capacity of our systems to run more circuits more quickly, while developing a platform where quantum developers can work seamlessly in the same integrated cloud-based framework,” wrote Wehden (pre-sales and client success director), Faro (distinguished engineer and tech lead), and Gambetta (IBM Fellow and VP quantum).

“Workloads with both quantum and classical components will not be constrained by origin or the nature of integration, and the hybrid cloud will allow these workloads to run everywhere that our cloud native systems run today and in the future.

“Today, we’re making crucial updates for quantum kernel developers writing code at the lowest level, for whom we’ve been focusing on developing circuit APIs. This year, we plan to release the Qiskit runtime—an execution environment that increases the capacity to run more circuits at a much faster rate than ever before, and with the capability to store quantum programs so other users can run them as a service. The Qiskit runtime rethinks the classical-quantum workload so that programs will be uploaded and executed on classical hardware located beside quantum hardware, slashing latencies emerging from communication between the user’s computer and the quantum processor,” they wrote.

IBM says these, and other improvements, “will lead to a 100x speedup in workloads that exploit iterative circuit execution, which will allow our quantum systems to run jobs in just a few hours that, today, can take months.”

The devil, of course, is in the details. The blog and video are worth perusing. Broadly, the conversation around quantum computing has spread and gained volume in recent months as government efforts (money) and the number of nascent quantum technology companies have mushroomed.

“By 2023, we expect to offer entire families of pre-built runtimes tailored to these domains, callable from a cloud-based API using a variety of common development frameworks. At this point, we think the foundations laid down by quantum kernel and algorithm developers will allow model and enterprise developers to explore quantum computing models on their own without having to think about the quantum physics. Developers will have the freedom to enrich systems built in any cloud-native hybrid runtime, language, and common programming framework, or integrate quantum components simply into any business workflow,” according to the blog.

From here to there seems like a long way technologically if not in time. The growing frenzy of research into varying qubit technologies, qubit control mechanisms, software tools, and underlying applications make it hard to predict winners and losers. The semiconductor-based superconducting qubit technology IBM has bet on is probably the most advanced. Ion trap and cold atom technologies are also gaining strength and recent work in optical approaches, led by the network community, is promising.

Developing a software ecosystem able to deal with diverse underlying qubit technologies while presenting a high enough abstraction layer to software developers to make their jobs easier would be a huge step forward.

As part of its announcements today, IBM also highlighted the Unitary Fund, a non-profit seeking to develop the ecosystem. IBM is a member. Here’s an excerpt from the Unitary Fund website

“We do two main things:

  • We run a microgrant program. We fund explorers across the world to work on quantum technologies. Do you have an idea for a project? Apply for a microgrant. More details are in our FAQ. Check out our previous grants.
  • We do our own research on projects that help the ecosystem as a whole. For example, we are developing mitiq, an open source compiler for error-mitigated quantum programming.

“Our grant program gives $4k cash grants for projects that help develop the quantum technology ecosystem. This could be open source quantum software, educational materials and workshops, a new quantum sensor prototype, or much more.”

The Unitary Fund lists its sponsors as: IBM, Alphabet X, Microsoft, Cambridge Quantum Computing, Rigetti, Xanadu, Zapata Computing, QCWare,  quantumcomputing.com, Strangeworks, PLOS, Steve Willis & NYC QuantumMeetup, EeroQ, John Hering, Jeff Cordova, Nima Alidoust, Travis Humble, Will Zeng

Link to IBM blog: https://www.ibm.com/blogs/research/2021/02/quantum-development-roadmap/

Link to IBM video: https://www.youtube.com/watch?v=bp7UFdtwdTw

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire