Exascale Computing Project Presents TAU, a CPU/GPU/MPI Profiler

By Rob Farber

February 15, 2021

Programmers cannot blindly guess which sections of their code might bottleneck performance. This problem is worsened when codes run across the variety of hardware platforms supported by the Exascale Computing Project (ECP). A section of code that runs well on one system might be a bottleneck on another system. Differing hardware execution models further compound the performance challenges that face application developers; these models can include the somewhat restricted SIMD (Single Instruction Multiple Data) and SIMT (Single Instruction Multiple Thread) computing for GPU models and the more complex and general MIMD (Multiple Instruction Multiple Data) for CPUs. New software programming models, such as Kokkos, also introduce multiple layers of abstraction and lambda functions that can hide or obscure the low-level execution details due to their complexity and anonymous nature. Differing memory systems inside a node and differences in the communications fabric that connect high-performance computing (HPC) nodes in a distributed supercomputer environment add even greater challenges in identifying performance bottlenecks during application performance analysis.

One Profiler for All HPC Systems

These issues are all addressed by the Tuning and Analysis Utilities (TAU) Performance System, which gives HPC programmers the ability to measure performance and see bottlenecks via one profiling tool that works well across a broad spectrum of widely differing HPC systems, architectures, languages, and software/hardware execution models. Thus, programmers do not need to guess about performance issues, nor do they need to learn a new hardware-specific profiler for each system.

Even better, TAU is lightweight. Users can use TAU to profile binary applications if the binary is compiled with the symbol table. The only exception is if a code invokes a lambda function that must be compiled for the destination hardware. In this case, extra instrumentation is required.

Sameer Shende, the director of the Performance Research Lab of the University of Oregon’s Neuroinformatics Center, observes that, “the TAU profiler supports all CPUs and GPUs, as well as multinode profiling with message passing interface (MPI) and high-level performance portable libraries, such as Kokkos. It’s one of the few tools that supports all vendor GPUs. The TAU profiler easily installs via Spack and is distributed in the Extreme-Scale Scientific Software Stack (E4S). Just install TAU with the target back-end CUDA, ROCm, L0 for OneAPI, etcetera.”

LLVM-Based Profiling Support

Considered a “Swiss army knife” of profiling, TAU relies on the open-source LLVM compiler infrastructure trace and instrumentation capabilities to collect profile information. Significant amounts of profile information can be collected from LLVM. This provides TAU with visibility into a huge range of architectures and compilers. Johannes Doerfert, a researcher at Argonne National Laboratory, notes that, “people don’t realize that all HPC vendor compilers are LLVM-based.” This broad level of support across so many diverse languages and hardware platforms explains the comment by Allen Malony, professor at the University of Oregon, who said, “TAU is a scalable, portable measurement system that supports every parallel runtime system and heterogeneous computing environment.”

Runtime and Multi-Level Profiling Support

TAU also provides support for the instrumentation of Kokkos codes and a broad range of runtimes at the node level, including OpenMP, pthread, OpenACC, CUDA, OpenCL, and HIP. It supports detailed MPI-level data by using the PMPI and MPI Tools interface.[1]

A brief summary of TAU’s capabilities is illustrated in Figure 1.

Figure 1: TAU profiling system. (Source: https://www.alcf.anl.gov/sites/default/files/2020-05/CompWorkshop_TAU_2020.pdf.)

Support for Lambda Functions

New software frameworks, such as Kokkos, have introduced performance portability and convenience features, such as lambda functions, to the HPC community. By using such languages and libraries, it is possible to write one version of a code that will run and produce correct results on many platforms. New abstractions, such as Intel’s OneAPI, are also in development to provide cross-platform applications that will run correctly on a variety of hardware platforms via a single code base.

The TAU team recognized that although cross-platform codes might run correctly, they might not perform equally well or adequately on all platforms. For this reason, they focused on a multilevel instrumentation strategy that encompasses the application code and language runtime to provide informative profiling information.[2]

Lambda functions excellently illustrate the need for informative profiling information. Many profilers use event-based profiling to evaluate complex nested template functions, such as the one shown in Figure 2.

Figure 2: Example of a nested template instantiation. (Source: https://www.researchgate.net/publication/337720583_Multi-Level_Performance_Instrumentation_for_Kokkos_Applications_Using_TAU.)

Functions of this complexity are the result of the Kokkos infrastructure mapping the logical space to the physical memory layout at compile time via template programming.

To obtain insightful and actionable performance results, a performance tool must receive metadata from the runtime, providing data mapping runtime behavior back to the application code that produced it. TAU uses these callbacks to start and stop timers, allowing human-readable timer names to be used in place of the names of C++ template instantiations. Thus, users would see the profiler label as shown in Figure 3 rather than as the nested template instantiation shown in Figure 2.

Figure 3: Example of how TAU can use callbacks to extract meaningful names from the Kokkos runtime. (Source: https://www.researchgate.net/publication/337720583_Multi-Level_Performance_Instrumentation_for_Kokkos_Applications_Using_TAU.)

Focus Optimization Efforts Based on Data

The TAU team gathers the raw profile information from many levels[3] to create several meaningful displays, reports, and trace analyzers that help users find performance issues in their parallel distributed codes. Shende notes, “With TAU, you can see the code regions of interest so you can study your application performance and identify where you should focus your optimization efforts.”

Example views generated by the ParaProf analysis tool are shown in Figure 4. In particular, ParaProf can display profile information about MPI communication calls in addition to node- and thread-level displays. A standard in HPC, the MPI library handles the communications that dictate the scaling and performance of many HPC applications.

Figure 4. TAU analysis with example ParaProf views.

Extensive and Easy to Install
It is easy to find documents, success stories, video guides and tutorials that cover the extensive capabilities of the TAU Performance System.[4],[5],[6] It is also easy to install; Shende points out that, “TAU easily installs via Spack and is distributed in E4S. Just install TAU with the target backend CUDA, ROCm, L0 for OneAPI.”

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national laboratories and commercial organizations. Rob can be reached at [email protected]

[1] https://www.cs.uoregon.edu/research/tau/TAU_Kokkos_SC19.pdf

[2] https://www.researchgate.net/publication/337720583_Multi-Level_Performance_Instrumentation_for_Kokkos_Applications_Using_TAU

[3] Ibid

[4] https://www.cs.uoregon.edu/research/tau/home.php

[5] https://www.cs.uoregon.edu/research/tau/docs.php

[6] https://www.cs.uoregon.edu/research/tau/pubs.php

Republished with permission of Exascale Computing Project.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the global stage. Now, the Mohammed VI Polytechnic University (U Read more…

By Oliver Peckham

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

February 25, 2021

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply over Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing system, called "Wisteria/BDEC-01," that will tackle simulati Read more…

By Tiffany Trader

President Biden Signs Executive Order to Review Chip, Other Supply Chains

February 24, 2021

U.S. President Biden signed an executive order late today calling for a 100-day review of key supply chains including semiconductors, large capacity batteries, pharmaceuticals, and rare-earth elements. The scarcity of ch Read more…

By John Russell

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

AWS Solution Channel

Introducing AWS HPC Tech Shorts

Amazon Web Services (AWS) is excited to announce a new videos series focused on running HPC workloads on AWS. This new video series will cover HPC workloads from genomics, computational chemistry, to computational fluid dynamics (CFD) and more. Read more…

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

IBM’s Prototype Low-Power 7nm AI Chip Offers ‘Precision Scaling’

February 23, 2021

IBM has released details of a prototype AI chip geared toward low-precision training and inference across different AI model types while retaining model quality within AI applications. In a paper delivered during this year’s International Solid-State Circuits Virtual Conference, IBM... Read more…

By George Leopold

IBM Continues Mainstreaming Power Systems and Integrating Red Hat in Pivot to Cloud

February 23, 2021

As IBM continues its massive pivot to the cloud, its Power-microprocessor-based products are being mainstreamed and realigned with the corporate-wide strategy. Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

ENIAC at 75: Celebrating the World’s First Supercomputer

February 15, 2021

With little fanfare, today’s computer revolution was arguably born and announced through a small, innocuous, two-column story at the bottom of the front page of The New York Times on Feb. 15, 1946. In that story and others, the previously classified project, ENIAC... Read more…

By Todd R. Weiss

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

By Todd R. Weiss

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

MIT Makes a Big Breakthrough in Nonsilicon Transistors

December 10, 2020

What if Silicon Valley moved beyond silicon? In the 80’s, Seymour Cray was asking the same question, delivering at Supercomputing 1988 a talk titled “What’s All This About Gallium Arsenide?” The supercomputing legend intended to make gallium arsenide (GaA) the material of the future... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire