IBM’s Prototype Low-Power 7nm AI Chip Offers ‘Precision Scaling’

By George Leopold

February 23, 2021

IBM has released details of a prototype AI chip geared toward low-precision training and inference across different AI model types while retaining model quality within AI applications.

In a paper delivered during this year’s International Solid-State Circuits Virtual Conference, IBM also touted its AI chip based on 7nm process technology as the first energy-efficient device “at the vanguard of low precision training and inference.”

The low-power AI hardware accelerator is being targeted at applications ranging from cloud-based model training to shifting training closer to the edge deployments and data closer to edge network sources. Those scenarios would boost processing power in hybrid cloud environments without exacting a power penalty, the company said.

The “rapid evolution of AI model complexity also increases the technology’s energy consumption,” IBM researchers Ankur Agrawal and Kailash Gopalakrishnan noted in a blog post unveiling the AI chip design.

“We want to change this approach and develop an entire new class of energy-efficient AI hardware accelerators that will significantly increase compute power without requiring exorbitant energy,” they wrote. The would result, they added, in precision scaling.

IBM has been steadily improving the power performance ratio of its AI chips over the last half-decade. Along with algorithms that boost training and inference without sacrificing prediction accuracy, new chip designs on advanced fabrication nodes have been leveraged to handle complex workloads with greater power efficiency.

One approach reduced precision formats to 8 bits for training and 4 bits for inference, adding communications protocols that allow AI cores on a multi-core chip to exchange data. Designers recently demonstrated 4-bit training format at NeurIPS 2020. The goal is cutting training time and cost while erasing the “blurry border between cloud and edge computing,” the researchers noted.

IBM’s AI chip is optimized to perform 8-bit training and 4-bit inference on a range of AI models without model accuracy degradation. (Source: IBM Research)

The new AI silicon incorporates hybrid 8-bit floating point training and inference used for training deep learning models. The device is based on a 7nm chip fabricated using extreme UV process technology. The combination outperforms other dedicated inference and training chips in terms of performance and power consumption, IBM claims.

“We show that we can maximize the performance of the chip within its total power budget, by slowing it down during computation phases with high power consumption,” the researchers added. One reason is “high sustained utilization that translates to real application performance and is a key part of engineering our chip for energy efficiency.”

The payoff would be AI models that scale performance while reducing power consumption. The designers foresee edge applications for their low-power AI accelerator spanning deep learning models for machine vision, speech and natural language processing (NLP). Those models could replace current 16- and 32-bit formats used in many enterprise applications with lower-power 8-bit formats.

IBM also touts its approach as suited to cloud inference applications ranging from speech-to-text and text-to-speech along with NLP services and fraud detection.

Analysts note the latest IBM AI accelerator is a prototype, but that it does address key requirements for deploying AI models. “Energy efficiency with lower precision math does more than save on power, it can dramatically increase performance,” said Karl Freund, principal analyst at Cambrian-AI Research.

“It will be up to a design team to decide how to leverage this technology when it becomes available. This is still a test chip, but the promise IBM Research is offering is quite compelling,” Freund added.

Header image: Photo of 4-core AI chip, courtesy IBM Research

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire