Can Deep Learning Replace Numerical Weather Prediction?

By Oliver Peckham

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily constrained by the scale of the supercomputers that run them. While some wait for the exascale era – and beyond – to brute force punishingly accurate and complex climate models into existence, others are looking for a deep learning-powered shortcut to the same results. In a paper for Philosophical Transactions of the Royal Society, eight researchers from the Jülich Supercomputing Center explored whether deep learning could ever actually beat numerical weather prediction at its own game – and if so, how and when that might happen.

Status quo

The weather and climate supercomputing community is no stranger to deep learning, but it has hitherto mostly been used to augment NWP approaches (e.g. in resolving post-processing issues). These modelers, however, are reticent to incorporate deep learning in more meaningful capacities.

“[There] are still reservations about DL in this community,” the authors write. “Two core arguments in this regard are the lack of explainability of deep [neural networks] and the lack of physical constraints. Furthermore, some scepticism prevails due to the fact that researchers have experimented with rather simple [neural networks] which were clearly unsuited to capture the complexity of meteorological data and feedback processes, but then extrapolate these results to discredit any [neural network] application including the much more powerful [deep learning] systems.”

While the  paper explores whether deep learning could eventually replace significant elements of a major NWP model, it’s perhaps more interested in whether deep learning could replace the whole thing.

That bar, of course, is extraordinarily high.

“Over the past decades, the ability of NWP models to predict the future atmospheric state has continuously improved,” the paper reads. “Contemporary global NWP models are not only able to predict the synoptic-scale weather pattern for several days, but they have also reached remarkable accuracy in forecasting end-user relevant meteorological quantities such as the 2m temperature and regional-scale precipitation events.”

But deep learning hasn’t been standing still, either – far from it. Steep increases in available computational power also benefit deep learning applications, which are also boosted by increased data availability and a rapidly expanding library of neural network architectures. 

Comparison of NWP, deep learning, and hybrid workflows for NWP. Image courtesy of the authors.

In fact, some researchers have already carried out NWP-mimicking deep learning tests – but, the authors note, these studies have been extremely limited in scope, focusing on forecasting by up to a day. 

Learning curves

The authors suggest that any eventual deep learning replacement for an NWP would likely consist of several neural networks trained on subsets of forecast products, allowing deep learning techniques to excel by focusing on specific tasks. Key to this approach, they say, is understanding the distributions of meteorological and climatological variables, which can be both complex and crucial: by way of example, they discuss sea ice, which might change very little over the course of a typical forecast, but which produces profound effects in the medium- to long-term.

Challenges facing deep learning as it tackles weather prediction. Image courtesy of the authors.

A number of challenges face deep learning as it climbs toward NWP. For instance, rare extreme weather events are difficult in terms of training and testing, though the authors report some success across various studies in accounting for this gap. Data availability is another problem: NWP typically uses satellite data where missing values are interpolated, but using such filled-in data with deep learning models poses a serious risk of concept drift, where an assumption made early on leads to cascading built-in biases.

Indeed, the authors say that with respect to data preparation generally, “best practices differ between the meteorological and ML communities.” Machine learning development, they explain, typically involves three datasets: a training dataset, a validation dataset and a test dataset, all of which should be independent from one another. But there’s a problem here, at least for weather prediction: the data is auto-correlated, meaning the datasets aren’t truly independent. 

Furthermore, neural networks, the authors say, may need to be directly taught the relationships between certain variables, as short- to medium-term datasets are unlikely to teach a model to understand longer-term variations like El Nino or climate change. This need for intervention extends to limiting factors, as well: deep learning models might be inspired to produce physically impossible forecasts or establish scientifically unsound correlation-causation links. The authors say that some studies have introduced such physical restraints to general success.

“It may be useful to reflect on the potential and necessity of physically constraining [deep learning] models from an abstract point of view,” they add. “In spite of their complexity and dimensionality, [deep learning] models still adhere to the fundamental principles of (data-driven) statistical modelling. This implies that there must be some rules in place to constrain the future, because otherwise extrapolation will be unbound.”

Finally, the authors touch on uncertainty estimation. Ensemble models, which use a series of runs to estimate the relative likelihood of various outcomes, have become more or less the norm in top-of-the-line NWP. However, ensemble approaches introduce exorbitant computational costs for deep learning models. The authors discuss Bayesian deep learning as a reasonable alternative, noting that it has already been tested for weather forecasting applications.

Prognostication

So: where is deep learning-powered weather prediction heading?

“We expect that the field of ML in weather and climate science will grow rapidly in the coming years as more and more sophisticated ML architectures are becoming available and can easily be deployed on modern computer systems,” the authors write. “We [also] expect that the success of [deep learning] weather forecast applications will hinge on the consideration of physical constraints in the [neural network] design. Taken to the extreme, portions or variants of current numerical models could eventually end up as regulators in the latent space of deep neural weather forecasting networks.”

“So, to answer the question posed in the title of this article,” they conclude, “we can only say that there might be potential for end-to-end [deep learning] weather forecast applications to produce equal or better quality forecasts for specific end-user demands, especially if these systems can exploit small-scale patterns in the observational data which are not resolved in the traditional NWP model chain.”

“Whether [deep learning] will evolve enough to replace most or all of the current NWP systems cannot be answered at this point.”

About the research

The paper discussed in this article, “Can deep learning beat numerical weather prediction?“, was published in the February 2021 issue of Philosophical Transactions of the Royal Society. The paper was written by M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari and S. Stadtler, all of the Jülich Supercomputing Center in Germany.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

White House Scientific Integrity Report Addresses AI and ML Ethics

January 26, 2022

Earlier this month, the White House Office of Science and Technology Policy (OSTP) Scientific Integrity Task Force released a report titled “Protecting the Integrity of Government Science.” While broad-based and over Read more…

IBM Quantum Debuts Classical Entanglement Forging to Expand Simulation Capabilities

January 26, 2022

IBM last week reported a new technique – entanglement forging – that uses both quantum and classical computing resources to double the size of select simulation problems that can be solved on current quantum computer Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of all sizes. The new HPC-as-a-Service is part of the TruScale Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new ThreadArch multi-thread processor technology that is intended to h Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topologic Read more…

AWS Solution Channel

Register for the AWS “Speeds n’ Feeds” event on Feb. 9th

Since the debut of the first ‘Beowulf’ cluster in 1994, HPC has been a race between technologists squeezing as much performance as possible from hardware, and scale economics driving mass-production prices to affordable levels. Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new Thread Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

IBM Watson Health Finally Sold by IBM After 11 Months of Rumors

January 21, 2022

IBM has sold its underachieving IBM Watson Health unit for an undisclosed price tag to a global investment firm after almost a year’s worth of rumors that sai Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire