Can Deep Learning Replace Numerical Weather Prediction?

By Oliver Peckham

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily constrained by the scale of the supercomputers that run them. While some wait for the exascale era – and beyond – to brute force punishingly accurate and complex climate models into existence, others are looking for a deep learning-powered shortcut to the same results. In a paper for Philosophical Transactions of the Royal Society, eight researchers from the Jülich Supercomputing Center explored whether deep learning could ever actually beat numerical weather prediction at its own game – and if so, how and when that might happen.

Status quo

The weather and climate supercomputing community is no stranger to deep learning, but it has hitherto mostly been used to augment NWP approaches (e.g. in resolving post-processing issues). These modelers, however, are reticent to incorporate deep learning in more meaningful capacities.

“[There] are still reservations about DL in this community,” the authors write. “Two core arguments in this regard are the lack of explainability of deep [neural networks] and the lack of physical constraints. Furthermore, some scepticism prevails due to the fact that researchers have experimented with rather simple [neural networks] which were clearly unsuited to capture the complexity of meteorological data and feedback processes, but then extrapolate these results to discredit any [neural network] application including the much more powerful [deep learning] systems.”

While the  paper explores whether deep learning could eventually replace significant elements of a major NWP model, it’s perhaps more interested in whether deep learning could replace the whole thing.

That bar, of course, is extraordinarily high.

“Over the past decades, the ability of NWP models to predict the future atmospheric state has continuously improved,” the paper reads. “Contemporary global NWP models are not only able to predict the synoptic-scale weather pattern for several days, but they have also reached remarkable accuracy in forecasting end-user relevant meteorological quantities such as the 2m temperature and regional-scale precipitation events.”

But deep learning hasn’t been standing still, either – far from it. Steep increases in available computational power also benefit deep learning applications, which are also boosted by increased data availability and a rapidly expanding library of neural network architectures. 

Comparison of NWP, deep learning, and hybrid workflows for NWP. Image courtesy of the authors.

In fact, some researchers have already carried out NWP-mimicking deep learning tests – but, the authors note, these studies have been extremely limited in scope, focusing on forecasting by up to a day. 

Learning curves

The authors suggest that any eventual deep learning replacement for an NWP would likely consist of several neural networks trained on subsets of forecast products, allowing deep learning techniques to excel by focusing on specific tasks. Key to this approach, they say, is understanding the distributions of meteorological and climatological variables, which can be both complex and crucial: by way of example, they discuss sea ice, which might change very little over the course of a typical forecast, but which produces profound effects in the medium- to long-term.

Challenges facing deep learning as it tackles weather prediction. Image courtesy of the authors.

A number of challenges face deep learning as it climbs toward NWP. For instance, rare extreme weather events are difficult in terms of training and testing, though the authors report some success across various studies in accounting for this gap. Data availability is another problem: NWP typically uses satellite data where missing values are interpolated, but using such filled-in data with deep learning models poses a serious risk of concept drift, where an assumption made early on leads to cascading built-in biases.

Indeed, the authors say that with respect to data preparation generally, “best practices differ between the meteorological and ML communities.” Machine learning development, they explain, typically involves three datasets: a training dataset, a validation dataset and a test dataset, all of which should be independent from one another. But there’s a problem here, at least for weather prediction: the data is auto-correlated, meaning the datasets aren’t truly independent. 

Furthermore, neural networks, the authors say, may need to be directly taught the relationships between certain variables, as short- to medium-term datasets are unlikely to teach a model to understand longer-term variations like El Nino or climate change. This need for intervention extends to limiting factors, as well: deep learning models might be inspired to produce physically impossible forecasts or establish scientifically unsound correlation-causation links. The authors say that some studies have introduced such physical restraints to general success.

“It may be useful to reflect on the potential and necessity of physically constraining [deep learning] models from an abstract point of view,” they add. “In spite of their complexity and dimensionality, [deep learning] models still adhere to the fundamental principles of (data-driven) statistical modelling. This implies that there must be some rules in place to constrain the future, because otherwise extrapolation will be unbound.”

Finally, the authors touch on uncertainty estimation. Ensemble models, which use a series of runs to estimate the relative likelihood of various outcomes, have become more or less the norm in top-of-the-line NWP. However, ensemble approaches introduce exorbitant computational costs for deep learning models. The authors discuss Bayesian deep learning as a reasonable alternative, noting that it has already been tested for weather forecasting applications.

Prognostication

So: where is deep learning-powered weather prediction heading?

“We expect that the field of ML in weather and climate science will grow rapidly in the coming years as more and more sophisticated ML architectures are becoming available and can easily be deployed on modern computer systems,” the authors write. “We [also] expect that the success of [deep learning] weather forecast applications will hinge on the consideration of physical constraints in the [neural network] design. Taken to the extreme, portions or variants of current numerical models could eventually end up as regulators in the latent space of deep neural weather forecasting networks.”

“So, to answer the question posed in the title of this article,” they conclude, “we can only say that there might be potential for end-to-end [deep learning] weather forecast applications to produce equal or better quality forecasts for specific end-user demands, especially if these systems can exploit small-scale patterns in the observational data which are not resolved in the traditional NWP model chain.”

“Whether [deep learning] will evolve enough to replace most or all of the current NWP systems cannot be answered at this point.”

About the research

The paper discussed in this article, “Can deep learning beat numerical weather prediction?“, was published in the February 2021 issue of Philosophical Transactions of the Royal Society. The paper was written by M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari and S. Stadtler, all of the Jülich Supercomputing Center in Germany.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire