NIST/Xanadu Researchers Report Photonic Quantum Computing Advance

By John Russell

March 3, 2021

Researchers from the National Institute of Standards and Technology (NIST) and Xanadu, a young Canada-based quantum computing company, have reported developing a full-stack, photonic quantum computer able to carry out three important quantum algorithms, including one useful in quantum chemistry and another for graph similarity. Their work is published in Nature today (Quantum circuits with many photons on a programmable nanophotonic chip).

Photonic-based quantum computing has received somewhat less attention than superconducting and trapped ion-based systems. Photonic quantum computing advocates say it has advantages over other approaches, not least is the room temperature operation of photonic chips and reduced susceptibility to some of the noise vulnerabilities associated with other qubit technologies. That said the photon detectors require cryogenic temperatures although overall the apparatus is still less complicated and cumbersome than what’s required for other qubit technologies.

Xanadu has a good short video describing the tech. Briefly, there are three components to the system: 1) squeezer, 2) interferometer, and 3) photon detector. Using laser input, the squeezers (resonators) generate a special quantum state, a squeezed state, essentially forming the qubits (of superposed photons). The qubits are carried via a wave guide through a network or beam splitters and phase shifters which comprise the interferometer. Think of the interferometer as the controllable set of gates applied to the qubits. The outputs are entangled photons whose state and number is counted and interpreted.

The researchers write in their paper:

“Present day photonic quantum computers have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware-software system for executing many-photon quantum circuits using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. It enables remote users to execute quantum algorithms requiring up to eight modes of strongly squeezed vacuum initialized as two- mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and genuine photon number-resolving readout on all outputs.

“Multi-photon detection events with photon numbers and rates exceeding any previous quantum optical demonstration are made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra, and graph similarity.”

The figure below, taken from the Nature article, shows the experimental system setup.

The researchers note that until now, no photonic machine has been demonstrated that is simultaneously dynamically programmable, readily scalable to hundreds of modes and photons, and able to access a class of quantum circuits that could not, when the system size is scaled, be efficiently simulated by classical hardware. They write, “We report results from a new device based on a programmable nanophotonic chip which includes all of these capabilities in a single scalable and unified machine…While our device, at its current scale, can be readily simulated by a classical computer, the architecture and platform developed can potentially enable future generations of such machines to exit this regime and perform tasks that are not practically simulable by classical systems.”

The researchers ran tests around three classes of problems – Gaussian boson sampling, vibronic spectra, and graph similarity – and the results are best read directly in the paper. All three approaches show promise for being able, when run on quantum computers, to solve problems beyond the capacity of classical computers. The researchers were encouraged on all fronts but acknowledge the scale of their work now is not beyond classical computers.

The recent work is significant although as pointed out by Ulrik Andersen in a Nature news article in the same issue containing the paper, “Without doubt, the authors’ demonstration of quantum sampling on a programmable photonic chip using highly squeezed states is remarkable and represents a milestone in this field. However, the number of commercial applications that can be implemented using the current architecture is limited. Completely different platforms are required to run heftier algorithms, such as Shor’s algorithm for factoring large numbers into prime numbers, in an error-free manner. Fortunately, such platforms (also based on squeezed states) have been proposed, and their implementation constitutes the next step towards constructing a full-blown optical quantum computer.”

Scaling up is an important consideration noted by the researchers: “An important factor in assessing the viability of the platform presented is the scalability of this approach. What improvements to the platform and design are required in order to scale the system size to a level where quantum advantage could potentially be achieved? To answer this, we fix a target of 100 modes, which in our architecture would require: 50 squeezers operating with squeezing factors of r ≈ 1, a universal 50-spatial-mode interferometer, and 100 PNR detector channels. We also stipulate, as a rough estimate, that such a machine should incur no more than 3 dB of loss in the interferometer; this criterion is especially demanding, since the interferometer loss scales with the number of modes. Events with hundreds of photons would be detectable with such a machine.”

The researchers suggest a number of manufacturing improvements which would move them closer to the goal. It will be interesting to monitor Photonics-based quantum computing’s progress as several companies and working in the area.

Link to Nature paper: https://www.nature.com/articles/s41586-021-03202-1
Link to Nature news review: https://www.nature.com/articles/d41586-021-00488-z

Feature image: Xanadu’s photonic chip

Excerpt from the paper describing the apparatus details:

  • A custom modulated pump laser source producing a regular pulse train (100 kHz repetition rate) of 1.5ns duration rectangular pulses.
  • An electrically and optically packaged chip that synthesizes a programmable eight-mode Gaussian state with temporal mode characteristics appropriate for photon number resolving readout.
  • A locking system which serves to align and stabilize the resonance wavelengths of the on-chip squeezer resonators.
  • An array of digital-to-analog converters (DACs) for programming phase shifter voltages on the chip.
  • An array of low-loss (off-chip) wavelength filters to sup- press unwanted light, passing only wavelengths close to the signal and idler for detection.
  • A detection system, which consists of an array of eight transition-edge sensor (TES) detectors for photon number-resolving readout, and the auxiliary equipment required to operate and acquire data from them.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire