Azure, Oracle Lead the Cloud Pack in Offering AMD’s 3rd Gen Epyc CPU

By John Russell

March 16, 2021

Microsoft Azure and Oracle Cloud Infrastructure (OCI) yesterday announced general availability (GA) of instances using AMD’s new third-generation Epyc (Milan) microprocessor. The news coincided with AMD’s formal launch of the new chip and marks the first time Azure or Oracle have debuted new instances on the same day the chip was announced. Other cloud providers – among them AWS, Google Cloud, Tencent, and IBM Cloud – have also announced plans to offer instances using the new processor.

“We’re very pleased with our progress in the cloud,” said AMD CEO Lisa Su at the virtual launch event. “Today, we have over 200 first and second generation Epyc instances available. [With] the third generation Epyc, we see even more opportunity to accelerate our cloud deployments.” Besides hyperscaler enthusiasm for Milan, several systems makers – Dell, HPE, Lenovo and Supermicro – have also announced new products based third-gen Epyc, some of those systems also available today.

With a single shotgun blast AMD has unleashed a product-rich ecosystem hoping to cash in on pent-up demand. For more on the new chip itself, see HPCwire coverage of the virtual launch led by Su, AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale.

Winning deployment in major cloud providers has become a critical element in success for today’s microprocessor supplier community. There will no doubt be a variety of instance types based on third-gen Epyc processors turning up quickly.

Both Azure and Oracle pre-briefed HPCwire on their plans for using the new chip. Both reported significant performance and TCO improvements (more below) compared to earlier the Epyc generation and against current generation Intel-based instance. Azure also announced a new higher security VM based on Milan.

Jason Zander, executive vice president, Azure, said, “Microsoft and AMD are jointly announcing the private preview of confidential computing VMs in Azure, running the AMD epic third gen processors. Complementary computing builds on the strong encryption at rest and in transit capabilities to keep your data encrypted, all the way to the CPU. [Users] can easily take advantage of this added protection for their most sensitive workloads, without the need to rewrite or recompile them.”

Long-term collaboration with AMD as well as technology roadmap decision made by AMD helped speed both Azure and Oracle efforts. Evan Burness, Azure, principal program manager, Azure HPC, told HPCwire, “One thing we very much appreciated is they have had socket continuity for three different processor generations. Naples to Rome to Milan are all based on the SP3 socket. That enables us to do planning years in advance around our motherboard and server platform, and that minimizes the amount of motherboard reengineering that has to occur every time a new processor comes.”

“This is the fastest VM introduction Azure has ever done for HPC. And in fact, for any new processor generation period, Azure, as far as we can tell, a cloud provider has not been in GA day-in-date with a new processor technology launch,” said Burness adding Azure planned to stick to the so-called same day launch cadence going forward AMD.

The details for many of the forthcoming cloud-based third-gen Epyc offering are still being firmed up but Azure (HBv3 instance) and OCI’s (E4 instances) have instances available now. Here are snapshots of their current lineups provided by the companies:

A blog by Rajan Panchapakesan, director of product management, OCI, presented an overview of the new Oracle lineup:

“These E4 standard instances use 64 core processors, with a base clock frequency of 2.55 GHz and a max boost of up to 3.5 GHz. The bare metal E4 standard Compute instance supports 128 OCPUs (128 cores and 256 threads) with 256 MB of L3 cache, 2 TB of RAM, and 100 Gbps of overall network bandwidth. This configuration is the highest core count for a bare metal instance on any public cloud. The memory bandwidth is well suited for both general-purpose and high-bandwidth workloads that require larger and faster memory.

“As demonstrated in the following performance benchmarks (see blog), the E4 Standard instances deliver up to a 15% increase in integer performance, a 21% increase in floating point performance, and a 24% increase in java performance, compared to E3 Standard instances. Also, the E4 instances provide three times the price performance relative to other general-purpose instances offered by other cloud providers.

“New processors, better performance, and the same price as E3 Compute instances, combined with our flexible Compute approach, which enables you to granularly customize the core counts and memory of VMs, provide better value.”

Oracle says the E4 instances continue the flexible infrastructure approach established with E3: “You’re free to select the exact number of OCPUs and amount of memory that you need for a VM, not forced to choose from a fixed menu of 1, 2, 4, 8, or 16. You can launch any custom VM size that meets your needs, such as a 3-core, 6-core, or 63-core VM with anywhere from 1 GB–1 TB of memory.”

E4 instances bill separately for the CPU and memory resources provisioned. Each CPU comes with its associated simultaneous multithreading unit and is priced at $0.025, and memory is priced at $0.0015 per GB, which is the same prices for E3 instances.

Oracle has early customers using E4 instances. Matt Leonard, vice president, product management at OCI, told HPCwire the E4 is being targeted broadly at business-critical applications such as web applications, back end servers, gaming servers, caching, application development.

“We’re also seeing customers use it for high performance, video encoding, anything like that. We have a global 5g which is doing live streaming. So that’s a production platform where they’re basically doing live sports broadcast. We’ve got a large global electronics manufacturer that is basically looking for a general-purpose business application. They’re evaluating the E4 against some of our other offerings because of its price performance. I have a European betting and lottery that’s done real time analytics in order to generate bets. We’ve got large enterprise solutions provider in Europe that is looking for the price performance for large scale continuous development.”

Oracle says the following regions have E4 now with further rollouts planned: US East (Ashburn); US West (Phoenix); India west (Mumbai); Switzerland North (Zurich); Brazil East (Sao Paulo); Canada Southeast (Montreal); Australia southeast (Melbourne); Canada Southeast (Toronto).

Azure is also reporting favorable benchmarks. Burness told HPCwire, “With HBv3, we are able to provide about a 2.6x jump in per VM performance, as compared to what we delivered in our last generation of a 16-core HPC virtual machine, which was our Haswell introduction from 2016. This may sound like you know, 16 cores in some high-performance computing, but workloads around that size are actually a high percentage of the volume HPC jobs that we still see on Azure.”

Focusing on larger jobs, “What we’re seeing in our early testing, going up to more than 30,000 cores for an MPI job, is that Rome and Milan track really closely together for a while; then what happens is the doubled size and significantly re-architected cache structure of Milan kicks in compared to Rome. And we see performance advantages for at scale workloads, as high as 2x over Rome. It can be as low, at the low end (job size) of about 30 percent or 40 percent. You have to reach a certain level of scale before our high-end customers running MPI jobs – let’s call it 4,000 cores and 10,000 cores and up – when there are really big benefits from Milan in HBv3 as compared to Rome in HBv2.”

According to Burness, improvements to local SSD configuration are producing “3.5x to the nearly 5x” increase in local SSD performance. “A common refrain is storage in the cloud is very expensive, especially for on-premise buyers of high performance computing. Many our customers are finding it is a cost effective to use the local storage in our HPC instances, to create file systems on a per job basis.”

Burness also posted a blog describing Azure’s HBv3.

One interesting change Azure has made is in the way it delivers HBv3 cores. In its last couple generations of HPC, Azure has only offered one VM size and that VM size, said Burness, “was constructed to be as much of the physical server as we could with as little held back for the hypervisor as we could technically get away.” The idea was to deliver bare metal or as close to bare metal performance as one could get. But it was only one VM size.

“We’re doing something different this time. In HBv3 we’re doing the same thing; you still see 120 cores and those are physical cores, the hyper threading is always turned off. It corresponds to a part like the Epyc 7713. We have a custom version of it, but it’s, it’s very similar to the Epyc 7713.  But we’re cognizant we have this broad range of customer needs, who will want different configurations of processors. There’s nothing special about that statement. That’s why AMD doesn’t make only one processor SKU,” said Burness.

“What we’ve done is we’ve worked with AMD and our hypervisor team to create different VM sizes that very carefully hide certain cores to make the VM size look and perform as if it was another Milan SKU from AMD. We’re going to be one family, HBv3, and any of these sizes will have the same goodness in terms of global shared assets. They all have 200 gigabit InfiniBand, they all have the same board and 448 gigabytes of memory, they all have the same top-end memory bandwidth at 350 gigabytes per second, same top-end 480 megabytes of cache, same SSD, all those global shared assets stay constant. The only thing that changes is how many cores get exposed per VM,” he said.

Users now have more control over cost-performance issues. “If you want more memory per core than is offered on 120-core size, go deploy a 96- or 64-core size to get that right-sizing. If you have an application that is extremely expensive on a per-core basis, and your HPC scenario is not maxing performance within a software licensing constraint, go deploy something like the 16- or 32-core VMs. You don’t have to get locked into any one of those. The intent is to offer something that’s sort of like a VM that’s right sized for every customer,” said Burness.

Azure, like Oracle, is using a custom 64-core version of the new AMD chip. According to Azure, the HBv3-series virtual machines (VMs) are generally available in the East US, South Central US, and West Europe Azure regions. HBv3 VMs will also be available in the West US3 and Southeast Asia regions soon.

Google also made a short presentation during yesterday’s launch. Google Compute Engine introduced Epyc-based VMs last year on general purpose instances (N2D). Amin Vahdat, Google engineering fellow and vice president of systems hardware, announced plans to introduce third-gen Epyc processor-based instances later this year as well as plans to introduce confidential VMs leveraging Kubernetes.

“We are committed to helping customer on their digital transformation journeys. The key element of any digital transformation [is] security and isolation of workloads. That’s why we’re introducing confidential VMs and confidential GKE nodes, the first products in our confidential computing portfolio. They are breakthrough technologies and run on AMD Epyc,” said Vahdat.

Google Cloud plans to introduce a new compute-optimized VM called C2D based on third gen Epyc processors. “[This will offer] new machine sizes for compute intensive workloads, such as high-performance computing. We will also extend our current general purpose offering, N2D, to be to third generation Epyc processes. When it launches, customers will be able to auto upgrade to that new CPU generation. Finally, confidential computing will be available on both C2D and N2D on the latest Epyc processors at the time of launch,” said Vahdat.

Yet another vote of hyperscaler support came from IBM which also announced plans to offer third-gen Epyc-based servers in the IBM Cloud. In a blog post, Suresh Gopalakrishnan, vice president of IBM Cloud platform hardware, wrote, “The I/O bandwidth capability of AMD Epyc 7763 is industry ideal for large-scale databases and commercial deployments — especially when the PCIe Gen4 comes into play. The support for NVMe drives via PCIe Gen4 lanes notably scales I/O and helps reduce data access bottlenecks.”

The Epyc 7763 will be offered on IBM’s Cloud bare metal server clients and will feature:  64 cores per CPU (128 cores per server); 128 threads per CPU (256 threads per server); 128 GB to 4096 GB RAM per CPU; base clock frequency of 2.4GHz with a maximum boost of up to 3.6GHz; 8 memory channels per socket (up to 16 DIMMs per server); up to 10 local storage drives supported; monthly, pay-as-you-use billing; and orderable via the global IBM Cloud Catalog, API or CLI.

IBM reported the new instances will be available sometime this spring.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers


Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow