EQSIM: Exascale Computing Project Moves Needle on Earthquake Risk Assessment

By Rob Farber

March 19, 2021

As part of the US Department of Energy’s Exascale Computing Project (ECP), the Earthquake Simulation (EQSIM) application development team is creating a computational tool set and workflow for earthquake hazard and risk assessment that moves beyond the traditional empirically based techniques which are dependent on historical earthquake data. With software assistance from the ECP’s software technology group, the EQSIM team is working to give scientists and engineers the ability to simulate full end-to-end earthquake processes. This means understanding what takes place from the initiation of fault rupture (i.e., start of an earthquake) to modeling surface ground motions (i.e., earthquake hazard) to providing engineers with precise information that they can use to evaluate infrastructure response and evaluate the risk to people and property. EQSIM’s ultimate goal is to remove the computational limitations that currently prevent understanding earthquake phenomenology and practical earthquake hazard and risk assessments.

Traditional Empirically Based Ground Motion Estimates Do Not Capture Site Specificity

Traditional earthquake hazard and risk assessments for critical infrastructure have relied on empirically based approaches that use historical earthquake ground motions from many different locations to estimate future earthquake ground shake at a specific site of interest, such as a bridge or building. Because ground motions for a particular site are strongly influenced by the physics of the specific earthquake processes—including the fault rupture mechanics and seismic wave propagation through the ground (a complex heterogeneous medium)—much of the complexity of the ground shake is lost. Unfortunately, the homogenization of many disparate records in traditional empirically based estimates cannot fully capture the complex site specificity of ground motion, including frequency, amplitude, and directionality.

Advances in Computing Power Give Scientists the Ability to Assess Infrastructure Risk

Historically, limitations in available computing power meant that scientists and engineers running regional-scale earthquake simulations could only model ground vibrations at about 1 or 2 Hz, or one or two cycles per second. Although much progress had been made, it was insufficient because critical infrastructure, such as buildings, bridges, and energy system infrastructure can be seriously impacted by higher frequency vibrations up to 5 or 10 Hz. This mismatch between existing computational capability and what is needed to perform high fidelity simulation has limited scientists’ ability to simulate ground motions at frequencies relevant to structures and thus assess the risks associated with building collapse and the economic consequences of key infrastructure damage, such as bridges failing.

Groundbreaking performance increase

The focused effort of the EQSIM team has addressed this computational barrier and is now able to model ground movement up to 10 Hz. Along with other work, a porting effort to new GPU-based supercomputers has been fundamental in delivering this additional computational capability. The initial work was performed by using the Summit supercomputer at Oak Ridge National Laboratory with the assistance of ECP’s software technology team who support the RAJA performance portability libraries and other work related to preparation for the efficient execution of scientific software on emerging US Department of Energy exaflop platforms in the 2022 timeframe.

To appreciate this accomplishment, it is necessary to understand that the computational effort to perform ground motion simulations varies as frequency to the fourth power. Thus, doubling the frequency resolution requires 16 times more computational effort.

The increased capability to assess damage for a broad class of infrastructure is shown in Figure 1. In addition to running much higher fidelity models to capture higher frequency resolution, it is important to be able to run the associated models fast so the full space of earthquake parameters (e.g. the different ways a given fault can rupture) can be appropriately accounted for.

Figure 1. The EQSIM challenge of regional simulation at frequencies that impact a broad range of infrastructure. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

EQSIM Demonstrates the Value of Exascale Supercomputers

The large 16× growth in computational capability provides a ground level view of the tremendous value of exascale supercomputers. Current leadership-class machines provide an existing platform that acts as a jumping off point to demonstrate what is possible on these future machines. These initial efforts give scientists important insight into what is needed to accommodate the runtime growth of challenging but tractable physics-based simulations when the exascale systems become available. It also gives them insight into any limitations in the current models (e.g., limitations in models, mesh size, mesh resolution) that must be addressed to deliver optimal performance and actionable results.

End Result will Save Lives and Avoid Severe Economic Consequences

These efforts, as exemplified by EQSIM, will result in lives saved and the ability to assess and plan to avoid catastrophic infrastructure failure. In this case, existing infrastructure can be reinforced and policies amended for new building construction in earthquake zones.

The value proposition for EQSIM is great, and historic failures abound. Examples include the collapse of the double-deck Cypress Street Viaduct off Interstate 880 in West Oakland during the 1989 Loma Prieta earthquake in California. The failure of a 1.25 mi (2.0 km) section of the viaduct killed 42, injured many more, and caused roughly $11.6–12.4 billion in damage in inflation-adjusted dollars. Similarly, the 1994 Northridge earthquake killed 60 people, injured more than 9,000, and caused approximately $22–86 billion in 2014 inflation-adjusted dollars, making it one of the costliest natural disasters in US history. The Northridge earthquake also damaged portions of several major roads and freeways, including Interstate 10 over La Cienega Boulevard, and the interchanges of Interstate 5 with California State Route 14, 118, and Interstate 210 were also closed due to structural failure or collapse. All these previous events impacted transportation and the economies of the region for extended periods after the earthquake. Figure 2 shows EQSIM’s exascale goal to be able to execute high-fidelity simulations quickly within a computational ecosystem that delivers relevant results.

Figure 2. The EQSIM exascale goal to be able to execute high-fidelity simulations quickly within a computational ecosystem that delivers relevant results. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

EQSIM Encapsulates Extraordinary Physics in an End-to-End Workflow

The EQSIM team has focused on three areas to provide an end-to-end workflow that encompasses the relevant physics and performance requirements needed to give scientists the information they need to assess risk and hopefully avoid catastrophe.

David McCallen—Professor in the Department of Civil and Environmental Engineering at the University of Nevada, Reno and Senior Scientist at Lawrence Berkeley National Laboratory—observed in his interview with ECP Communications Specialist Scott Gibson that the team has been working in three areas. (Scott’s interview is available in text and podcast form.)

  • The EQSIM team has been improving the algorithms and sophistication of existing codes for ground motion simulation. The team is working with and optimizing the SW4 code that was originally developed at Lawrence Livermore National Laboratory.
  • The team is translating and porting codes to leadership-class GPU-based supercomputers, such as Summit. Currently, the team has achieved 10 Hz simulations, and seismic inversion capabilities being developed under EQSIM will provide a tool for improving the geologic models necessary to support these high frequency simulations.
  • The team is rigorously coupling the resulting ground motions to detailed infrastructure models including coupled soil-structure systems.
    This linkage between ground motion and infrastructure is very important because engineers can see how those complex 3D incident waves from ground movement impinge and interact with infrastructure. Previously, engineers had to make simplifying assumptions about how those incident waves looked, which necessarily limited the accuracy of their risk assessments using traditional empirically based techniques.

The richness of the information provided by the complete EQSIM workflow about the distribution of ground motions and the distribution of infrastructure risk is shown in Figure 3. The workflow includes several established and respected codes, including SW4, a fourth-order, 3D seismic wave propagation model; NEVADA, a nonlinear, finite displacement program for building earthquake response; and OPENSEES, a nonlinear finite-element program for coupled soil-structure interaction.

Figure 3. EQSIM provides a framework for regional-scale fault-to-structure simulation – San Francisco Bay Area regional domain for EQSIM performance testing, Hayward fault is shown along the eastern margin of the San Francisco Bay. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

Assessing the Results

To evaluate regional-scale simulations and measure the computational progress of the application development and exascale performance goals of this project, the team created a representative large regional-scale detailed model of the San Francisco Bay Area (SFBA), as shown in Figure 3.

This model includes all the necessary geophysics modeling features (e.g., 3D geology, earth surface topography, material attenuation, nonreflecting boundaries, fault rupture models). For a 10 Hz simulation, the computational domain includes up to 300 billion grid points in the finite difference domain for models that contain fine-scale representations of soft near-surface sedimentary soils. The SFBA model provides a comprehensive basis for testing and evaluating advanced physics algorithms and computational implementations. The Hayward fault, running along the east side of the San Francisco Bay and a central focus of the EQSIM performance testing (shown by the line paralleling the San Francisco Bay in Figure 3), has consistently generated a major earthquake every 150 years on average and the last event occurred in 1868, making the simulation of this region and this fault of particular societal importance.

McCallen notes that moving to the Summit supercomputer and the associated software development effort were “tremendously enabling” because they increased the EQSIM figure of merit (FOM) from a factor of 66 to 189. The FOM is a quantitative metric of the scientific work rate of an application. As the code is optimized to run faster, the FOM increases. As shown in Figure 4, the 1 year jump between FY19 and FY20 is huge.

Figure 4. Advancements in the EQSIM FOM; benchmark performance tests A through F. (Source: https://www.exascaleproject.org/research-project/eqsim.)

Summary

The EQSIM project demonstrates the value of extreme scale (e.g., exascale) supercomputers. When coupled with the equally sophisticated software, such computational power can demonstrably deliver the performance scientists and engineers need to solve socially relevant problems that can save lives and prevent future economic distress.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national laboratories and commercial organizations. Rob can be reached at info@techenablement.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire