EQSIM: Exascale Computing Project Moves Needle on Earthquake Risk Assessment

By Rob Farber

March 19, 2021

As part of the US Department of Energy’s Exascale Computing Project (ECP), the Earthquake Simulation (EQSIM) application development team is creating a computational tool set and workflow for earthquake hazard and risk assessment that moves beyond the traditional empirically based techniques which are dependent on historical earthquake data. With software assistance from the ECP’s software technology group, the EQSIM team is working to give scientists and engineers the ability to simulate full end-to-end earthquake processes. This means understanding what takes place from the initiation of fault rupture (i.e., start of an earthquake) to modeling surface ground motions (i.e., earthquake hazard) to providing engineers with precise information that they can use to evaluate infrastructure response and evaluate the risk to people and property. EQSIM’s ultimate goal is to remove the computational limitations that currently prevent understanding earthquake phenomenology and practical earthquake hazard and risk assessments.

Traditional Empirically Based Ground Motion Estimates Do Not Capture Site Specificity

Traditional earthquake hazard and risk assessments for critical infrastructure have relied on empirically based approaches that use historical earthquake ground motions from many different locations to estimate future earthquake ground shake at a specific site of interest, such as a bridge or building. Because ground motions for a particular site are strongly influenced by the physics of the specific earthquake processes—including the fault rupture mechanics and seismic wave propagation through the ground (a complex heterogeneous medium)—much of the complexity of the ground shake is lost. Unfortunately, the homogenization of many disparate records in traditional empirically based estimates cannot fully capture the complex site specificity of ground motion, including frequency, amplitude, and directionality.

Advances in Computing Power Give Scientists the Ability to Assess Infrastructure Risk

Historically, limitations in available computing power meant that scientists and engineers running regional-scale earthquake simulations could only model ground vibrations at about 1 or 2 Hz, or one or two cycles per second. Although much progress had been made, it was insufficient because critical infrastructure, such as buildings, bridges, and energy system infrastructure can be seriously impacted by higher frequency vibrations up to 5 or 10 Hz. This mismatch between existing computational capability and what is needed to perform high fidelity simulation has limited scientists’ ability to simulate ground motions at frequencies relevant to structures and thus assess the risks associated with building collapse and the economic consequences of key infrastructure damage, such as bridges failing.

Groundbreaking performance increase

The focused effort of the EQSIM team has addressed this computational barrier and is now able to model ground movement up to 10 Hz. Along with other work, a porting effort to new GPU-based supercomputers has been fundamental in delivering this additional computational capability. The initial work was performed by using the Summit supercomputer at Oak Ridge National Laboratory with the assistance of ECP’s software technology team who support the RAJA performance portability libraries and other work related to preparation for the efficient execution of scientific software on emerging US Department of Energy exaflop platforms in the 2022 timeframe.

To appreciate this accomplishment, it is necessary to understand that the computational effort to perform ground motion simulations varies as frequency to the fourth power. Thus, doubling the frequency resolution requires 16 times more computational effort.

The increased capability to assess damage for a broad class of infrastructure is shown in Figure 1. In addition to running much higher fidelity models to capture higher frequency resolution, it is important to be able to run the associated models fast so the full space of earthquake parameters (e.g. the different ways a given fault can rupture) can be appropriately accounted for.

Figure 1. The EQSIM challenge of regional simulation at frequencies that impact a broad range of infrastructure. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

EQSIM Demonstrates the Value of Exascale Supercomputers

The large 16× growth in computational capability provides a ground level view of the tremendous value of exascale supercomputers. Current leadership-class machines provide an existing platform that acts as a jumping off point to demonstrate what is possible on these future machines. These initial efforts give scientists important insight into what is needed to accommodate the runtime growth of challenging but tractable physics-based simulations when the exascale systems become available. It also gives them insight into any limitations in the current models (e.g., limitations in models, mesh size, mesh resolution) that must be addressed to deliver optimal performance and actionable results.

End Result will Save Lives and Avoid Severe Economic Consequences

These efforts, as exemplified by EQSIM, will result in lives saved and the ability to assess and plan to avoid catastrophic infrastructure failure. In this case, existing infrastructure can be reinforced and policies amended for new building construction in earthquake zones.

The value proposition for EQSIM is great, and historic failures abound. Examples include the collapse of the double-deck Cypress Street Viaduct off Interstate 880 in West Oakland during the 1989 Loma Prieta earthquake in California. The failure of a 1.25 mi (2.0 km) section of the viaduct killed 42, injured many more, and caused roughly $11.6–12.4 billion in damage in inflation-adjusted dollars. Similarly, the 1994 Northridge earthquake killed 60 people, injured more than 9,000, and caused approximately $22–86 billion in 2014 inflation-adjusted dollars, making it one of the costliest natural disasters in US history. The Northridge earthquake also damaged portions of several major roads and freeways, including Interstate 10 over La Cienega Boulevard, and the interchanges of Interstate 5 with California State Route 14, 118, and Interstate 210 were also closed due to structural failure or collapse. All these previous events impacted transportation and the economies of the region for extended periods after the earthquake. Figure 2 shows EQSIM’s exascale goal to be able to execute high-fidelity simulations quickly within a computational ecosystem that delivers relevant results.

Figure 2. The EQSIM exascale goal to be able to execute high-fidelity simulations quickly within a computational ecosystem that delivers relevant results. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

EQSIM Encapsulates Extraordinary Physics in an End-to-End Workflow

The EQSIM team has focused on three areas to provide an end-to-end workflow that encompasses the relevant physics and performance requirements needed to give scientists the information they need to assess risk and hopefully avoid catastrophe.

David McCallen—Professor in the Department of Civil and Environmental Engineering at the University of Nevada, Reno and Senior Scientist at Lawrence Berkeley National Laboratory—observed in his interview with ECP Communications Specialist Scott Gibson that the team has been working in three areas. (Scott’s interview is available in text and podcast form.)

  • The EQSIM team has been improving the algorithms and sophistication of existing codes for ground motion simulation. The team is working with and optimizing the SW4 code that was originally developed at Lawrence Livermore National Laboratory.
  • The team is translating and porting codes to leadership-class GPU-based supercomputers, such as Summit. Currently, the team has achieved 10 Hz simulations, and seismic inversion capabilities being developed under EQSIM will provide a tool for improving the geologic models necessary to support these high frequency simulations.
  • The team is rigorously coupling the resulting ground motions to detailed infrastructure models including coupled soil-structure systems.
    This linkage between ground motion and infrastructure is very important because engineers can see how those complex 3D incident waves from ground movement impinge and interact with infrastructure. Previously, engineers had to make simplifying assumptions about how those incident waves looked, which necessarily limited the accuracy of their risk assessments using traditional empirically based techniques.

The richness of the information provided by the complete EQSIM workflow about the distribution of ground motions and the distribution of infrastructure risk is shown in Figure 3. The workflow includes several established and respected codes, including SW4, a fourth-order, 3D seismic wave propagation model; NEVADA, a nonlinear, finite displacement program for building earthquake response; and OPENSEES, a nonlinear finite-element program for coupled soil-structure interaction.

Figure 3. EQSIM provides a framework for regional-scale fault-to-structure simulation – San Francisco Bay Area regional domain for EQSIM performance testing, Hayward fault is shown along the eastern margin of the San Francisco Bay. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

Assessing the Results

To evaluate regional-scale simulations and measure the computational progress of the application development and exascale performance goals of this project, the team created a representative large regional-scale detailed model of the San Francisco Bay Area (SFBA), as shown in Figure 3.

This model includes all the necessary geophysics modeling features (e.g., 3D geology, earth surface topography, material attenuation, nonreflecting boundaries, fault rupture models). For a 10 Hz simulation, the computational domain includes up to 300 billion grid points in the finite difference domain for models that contain fine-scale representations of soft near-surface sedimentary soils. The SFBA model provides a comprehensive basis for testing and evaluating advanced physics algorithms and computational implementations. The Hayward fault, running along the east side of the San Francisco Bay and a central focus of the EQSIM performance testing (shown by the line paralleling the San Francisco Bay in Figure 3), has consistently generated a major earthquake every 150 years on average and the last event occurred in 1868, making the simulation of this region and this fault of particular societal importance.

McCallen notes that moving to the Summit supercomputer and the associated software development effort were “tremendously enabling” because they increased the EQSIM figure of merit (FOM) from a factor of 66 to 189. The FOM is a quantitative metric of the scientific work rate of an application. As the code is optimized to run faster, the FOM increases. As shown in Figure 4, the 1 year jump between FY19 and FY20 is huge.

Figure 4. Advancements in the EQSIM FOM; benchmark performance tests A through F. (Source: https://www.exascaleproject.org/research-project/eqsim.)

Summary

The EQSIM project demonstrates the value of extreme scale (e.g., exascale) supercomputers. When coupled with the equally sophisticated software, such computational power can demonstrably deliver the performance scientists and engineers need to solve socially relevant problems that can save lives and prevent future economic distress.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national laboratories and commercial organizations. Rob can be reached at [email protected]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last t Read more…

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire