EQSIM: Exascale Computing Project Moves Needle on Earthquake Risk Assessment

By Rob Farber

March 19, 2021

As part of the US Department of Energy’s Exascale Computing Project (ECP), the Earthquake Simulation (EQSIM) application development team is creating a computational tool set and workflow for earthquake hazard and risk assessment that moves beyond the traditional empirically based techniques which are dependent on historical earthquake data. With software assistance from the ECP’s software technology group, the EQSIM team is working to give scientists and engineers the ability to simulate full end-to-end earthquake processes. This means understanding what takes place from the initiation of fault rupture (i.e., start of an earthquake) to modeling surface ground motions (i.e., earthquake hazard) to providing engineers with precise information that they can use to evaluate infrastructure response and evaluate the risk to people and property. EQSIM’s ultimate goal is to remove the computational limitations that currently prevent understanding earthquake phenomenology and practical earthquake hazard and risk assessments.

Traditional Empirically Based Ground Motion Estimates Do Not Capture Site Specificity

Traditional earthquake hazard and risk assessments for critical infrastructure have relied on empirically based approaches that use historical earthquake ground motions from many different locations to estimate future earthquake ground shake at a specific site of interest, such as a bridge or building. Because ground motions for a particular site are strongly influenced by the physics of the specific earthquake processes—including the fault rupture mechanics and seismic wave propagation through the ground (a complex heterogeneous medium)—much of the complexity of the ground shake is lost. Unfortunately, the homogenization of many disparate records in traditional empirically based estimates cannot fully capture the complex site specificity of ground motion, including frequency, amplitude, and directionality.

Advances in Computing Power Give Scientists the Ability to Assess Infrastructure Risk

Historically, limitations in available computing power meant that scientists and engineers running regional-scale earthquake simulations could only model ground vibrations at about 1 or 2 Hz, or one or two cycles per second. Although much progress had been made, it was insufficient because critical infrastructure, such as buildings, bridges, and energy system infrastructure can be seriously impacted by higher frequency vibrations up to 5 or 10 Hz. This mismatch between existing computational capability and what is needed to perform high fidelity simulation has limited scientists’ ability to simulate ground motions at frequencies relevant to structures and thus assess the risks associated with building collapse and the economic consequences of key infrastructure damage, such as bridges failing.

Groundbreaking performance increase

The focused effort of the EQSIM team has addressed this computational barrier and is now able to model ground movement up to 10 Hz. Along with other work, a porting effort to new GPU-based supercomputers has been fundamental in delivering this additional computational capability. The initial work was performed by using the Summit supercomputer at Oak Ridge National Laboratory with the assistance of ECP’s software technology team who support the RAJA performance portability libraries and other work related to preparation for the efficient execution of scientific software on emerging US Department of Energy exaflop platforms in the 2022 timeframe.

To appreciate this accomplishment, it is necessary to understand that the computational effort to perform ground motion simulations varies as frequency to the fourth power. Thus, doubling the frequency resolution requires 16 times more computational effort.

The increased capability to assess damage for a broad class of infrastructure is shown in Figure 1. In addition to running much higher fidelity models to capture higher frequency resolution, it is important to be able to run the associated models fast so the full space of earthquake parameters (e.g. the different ways a given fault can rupture) can be appropriately accounted for.

Figure 1. The EQSIM challenge of regional simulation at frequencies that impact a broad range of infrastructure. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

EQSIM Demonstrates the Value of Exascale Supercomputers

The large 16× growth in computational capability provides a ground level view of the tremendous value of exascale supercomputers. Current leadership-class machines provide an existing platform that acts as a jumping off point to demonstrate what is possible on these future machines. These initial efforts give scientists important insight into what is needed to accommodate the runtime growth of challenging but tractable physics-based simulations when the exascale systems become available. It also gives them insight into any limitations in the current models (e.g., limitations in models, mesh size, mesh resolution) that must be addressed to deliver optimal performance and actionable results.

End Result will Save Lives and Avoid Severe Economic Consequences

These efforts, as exemplified by EQSIM, will result in lives saved and the ability to assess and plan to avoid catastrophic infrastructure failure. In this case, existing infrastructure can be reinforced and policies amended for new building construction in earthquake zones.

The value proposition for EQSIM is great, and historic failures abound. Examples include the collapse of the double-deck Cypress Street Viaduct off Interstate 880 in West Oakland during the 1989 Loma Prieta earthquake in California. The failure of a 1.25 mi (2.0 km) section of the viaduct killed 42, injured many more, and caused roughly $11.6–12.4 billion in damage in inflation-adjusted dollars. Similarly, the 1994 Northridge earthquake killed 60 people, injured more than 9,000, and caused approximately $22–86 billion in 2014 inflation-adjusted dollars, making it one of the costliest natural disasters in US history. The Northridge earthquake also damaged portions of several major roads and freeways, including Interstate 10 over La Cienega Boulevard, and the interchanges of Interstate 5 with California State Route 14, 118, and Interstate 210 were also closed due to structural failure or collapse. All these previous events impacted transportation and the economies of the region for extended periods after the earthquake. Figure 2 shows EQSIM’s exascale goal to be able to execute high-fidelity simulations quickly within a computational ecosystem that delivers relevant results.

Figure 2. The EQSIM exascale goal to be able to execute high-fidelity simulations quickly within a computational ecosystem that delivers relevant results. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

EQSIM Encapsulates Extraordinary Physics in an End-to-End Workflow

The EQSIM team has focused on three areas to provide an end-to-end workflow that encompasses the relevant physics and performance requirements needed to give scientists the information they need to assess risk and hopefully avoid catastrophe.

David McCallen—Professor in the Department of Civil and Environmental Engineering at the University of Nevada, Reno and Senior Scientist at Lawrence Berkeley National Laboratory—observed in his interview with ECP Communications Specialist Scott Gibson that the team has been working in three areas. (Scott’s interview is available in text and podcast form.)

  • The EQSIM team has been improving the algorithms and sophistication of existing codes for ground motion simulation. The team is working with and optimizing the SW4 code that was originally developed at Lawrence Livermore National Laboratory.
  • The team is translating and porting codes to leadership-class GPU-based supercomputers, such as Summit. Currently, the team has achieved 10 Hz simulations, and seismic inversion capabilities being developed under EQSIM will provide a tool for improving the geologic models necessary to support these high frequency simulations.
  • The team is rigorously coupling the resulting ground motions to detailed infrastructure models including coupled soil-structure systems.
    This linkage between ground motion and infrastructure is very important because engineers can see how those complex 3D incident waves from ground movement impinge and interact with infrastructure. Previously, engineers had to make simplifying assumptions about how those incident waves looked, which necessarily limited the accuracy of their risk assessments using traditional empirically based techniques.

The richness of the information provided by the complete EQSIM workflow about the distribution of ground motions and the distribution of infrastructure risk is shown in Figure 3. The workflow includes several established and respected codes, including SW4, a fourth-order, 3D seismic wave propagation model; NEVADA, a nonlinear, finite displacement program for building earthquake response; and OPENSEES, a nonlinear finite-element program for coupled soil-structure interaction.

Figure 3. EQSIM provides a framework for regional-scale fault-to-structure simulation – San Francisco Bay Area regional domain for EQSIM performance testing, Hayward fault is shown along the eastern margin of the San Francisco Bay. (Source: https://ecpannualmeeting.com/assets/overview/sessions/ECP2020McCallenFinal-compressed.pdf.)

Assessing the Results

To evaluate regional-scale simulations and measure the computational progress of the application development and exascale performance goals of this project, the team created a representative large regional-scale detailed model of the San Francisco Bay Area (SFBA), as shown in Figure 3.

This model includes all the necessary geophysics modeling features (e.g., 3D geology, earth surface topography, material attenuation, nonreflecting boundaries, fault rupture models). For a 10 Hz simulation, the computational domain includes up to 300 billion grid points in the finite difference domain for models that contain fine-scale representations of soft near-surface sedimentary soils. The SFBA model provides a comprehensive basis for testing and evaluating advanced physics algorithms and computational implementations. The Hayward fault, running along the east side of the San Francisco Bay and a central focus of the EQSIM performance testing (shown by the line paralleling the San Francisco Bay in Figure 3), has consistently generated a major earthquake every 150 years on average and the last event occurred in 1868, making the simulation of this region and this fault of particular societal importance.

McCallen notes that moving to the Summit supercomputer and the associated software development effort were “tremendously enabling” because they increased the EQSIM figure of merit (FOM) from a factor of 66 to 189. The FOM is a quantitative metric of the scientific work rate of an application. As the code is optimized to run faster, the FOM increases. As shown in Figure 4, the 1 year jump between FY19 and FY20 is huge.

Figure 4. Advancements in the EQSIM FOM; benchmark performance tests A through F. (Source: https://www.exascaleproject.org/research-project/eqsim.)

Summary

The EQSIM project demonstrates the value of extreme scale (e.g., exascale) supercomputers. When coupled with the equally sophisticated software, such computational power can demonstrably deliver the performance scientists and engineers need to solve socially relevant problems that can save lives and prevent future economic distress.

Rob Farber is a global technology consultant and author with an extensive background in HPC and in developing machine learning technology that he applies at national laboratories and commercial organizations. Rob can be reached at info@techenablement.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

Graphcore and its “Intelligent Processing Units” (IPUs) emerged from stealth in 2016 and launched its second-generation IPU in 2020. While the company has also launched its IPUs in a variety of form factors over the Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat for that approach), announced it was expanding into gate-based Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the power of Fugaku, the current top-ranked supercomputer in the wor Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 537899029

Running GROMACS on GPU instances

Comparing the performance of real applications across different Amazon Elastic Compute Cloud (Amazon EC2) instance types is the best way we’ve found for finding optimal configurations for HPC applications here at AWS. Read more…

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire