Preparing for the Arrival of Intel’s Discrete High-Performance GPUs

By Hartwig Anzt

March 23, 2021

In this contributed guest post, Hartwig Anzt summarizes his and team’s work porting a sparse linear algebra math library to Intel GPUs, using the DPC++ programming environment. Early benchmarking of sparse linear
algebra functionality on different Intel GPUs is also presented.

Intel’s GPUs will come. There may be discussions about the role Intel’s GPUs will play in the Aurora supercomputer, the second exascale system of the U.S. Exascale Computing Project, but Intel certainly has committed to developing discrete GPUs for high-performance computing. And while any predictions about the performance characteristics and technical realizations are rather speculative, the plans for the software ecosystem are rather mature.

Intel has teamed up with Codeplay, HPE, and other institutions from industry and academia to form a “cross-industry, open, standards-based unified programming model that delivers a common developer experience across accelerator architectures”: oneAPI. This SYCL-based programming model is expected to become the primary vehicle for applications to leverage the computing power of Intel GPUs. With the importance of Intel architectures for the U.S. Exascale Computing Project in mind, we report in a preprint the developer effort necessary to prepare a high-performance math library for Intel GPU architectures and the maturity of the oneAPI ecosystem. The ecosystem contains not only the DPC++ compiler ready to compile code for multicore processors and GPUs, but Intel also developed a number of libraries for mathematical functionality, video processing, analytics and machine learning, deep neural networks, and others (see Figure 1). The goal is to provide high-productivity toolboxes to the application specialists to ease development and performance tuning.

Figure 1: The oneAPI ecosystem. Source: Intel Corporation.

Our report describes that the DPC++ Compatibility Tool (DPCT) provided by Intel is a useful tool to convert CUDA code to DPC++, but primarily designed for moderate-sized libraries with few dependencies that aim at a complete transition to the oneAPI ecosystem. For applications that rely on distinct hardware-specific backends for platform portability, like the Ginkgo library we develop as an ECP product that is part of the E4S software stack, the use of the DPC++ Portability Tool needs both preprocessing and postprocessing of the files to generate a working backend without disabling the support for other architectures.


“[H]aving a working backend is only the entry-level: for high-performance applications, significant optimization efforts are necessary to push the performance to the hardware-specific limits.”


Using customized workarounds, the DPCT can significantly reduce the porting effort. We were able to develop a working DPC++ backend for Ginkgo within two weeks. However, having a working backend is only the entry-level: for high-performance applications, significant optimization efforts are necessary to push the performance to the hardware-specific limits. And it is this phase that reveals that the oneAPI ecosystem is still under development. Some basic functionality like cooperative groups are still missing, and also Intel’s open-source oneMKL math library up to now only incrementally expands to cover the kernel zoo of the exemplary CPU-focused Intel Math kernel Library (MKL). We need some hand-crafted solutions to enable the full functionality. And then? Will the converted CUDA kernels deliver good performance on Intel GPUs? For obvious reasons, it is meaningless to compare the performance the original CUDA kernel achieves on the Nvidia V100 GPU deployed in the Summit supercomputer with a prototype of the Intel GPU planned for the Aurora system. Instead, we do not look at absolute performance, but at performance relative to the architecture-specific limitations. In figure 2, we visualize the performance Ginkgo’s Sparse Matrix Vector (SpMV) kernels achieve relative to the hardware specifications on the Nvidia V100 GPU (left) and Intel’s Gen12LP GPU (right).

Figure 2: Performance of sparse matrix operations relative to the hardware-specific limitations on the Nvidia V100 GPU (left) and the Intel Gen12LP GPU available in the Intel DevCloud (right). The Ginkgo kernels running on the Intel GPUs are the DPCT-converted CUDA kernels without applying additional architecture-specific optimizations, see [1].

In these graphs, we do include the performance of the SpMV kernels available in the vendor libraries to compare not only against the architecture characteristics, but also against a vendor-optimized kernel. The graphs reveal that the performance ratio of the kernels is not unaffected by the code conversion via DPCT and the architecture change. However, even without applying architecture-specific kernel optimizations for the Intel GPUs, the kernels generated by DPCT remain competitive to the vendor functionality and achieve a good fraction of the theoretical peak.

Despite the immaturity of the ecosystem in its early days, it is the community involvement of Intel that makes one believe this effort has a future. Intel does a lot right when carrying out an open communication strategy in the oneAPI effort, reaching out to scientists already early on, welcoming recommendations from the community and fixing bugs at the earliest convenience, allowing for community code contributions in the oneAPI libraries and making them open-source, and providing with the Intel DevCloud a platform where early adopters can already get a feeling of how running code on Intel GPUs feels like.

[1] Yu-Hsiang M. Tsai, Terry Cojean, and Hartwig Anzt: Porting a sparse linear algebra math library to Intel GPUs,  https://arxiv.org/abs/2103.10116

Author Bio – Hartwig Anzt

Hartwig Anzt is a Helmholtz-Young-Investigator Group leader at the Steinbuch Centre for Computing at the Karlsruhe Institute of Technology (KIT) and Research Scientist in Jack Dongarra’s Innovative Computing Lab at the University of Tennessee. He obtained his Ph.D. in Mathematics at the Karlsruhe Institute of Technology in 2012. Hartwig Anzt is part of the U.S. Exascale Computing Project (ECP) where he is leading the cross-laboratory Multiprecision Focus Effort. He also leads the numerical solver effort in the upcoming EuroHPC project MICROCARD. Hartwig Anzt has a long track record of high-quality software development. He is author of the MAGMA-sparse open-source software package managing lead and developer of the Ginkgo numerical linear algebra library.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire