CERN Is Betting Big on Exascale

By Oliver Peckham

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the world: the Large Hadron Collider. Even with so much organizational and mechanical firepower behind it, though, CERN and the LHC are outgrowing their current computing infrastructure, demanding big shifts in how the world’s biggest physics experiment collects, stores and analyzes its data. At the 2021 EuroHPC Summit Week, Maria Girone, CTO of the CERN openlab, discussed how those shifts will be made.

The answer, of course: HPC.

The Large Hadron Collider – a massive particle accelerator – is capable of collecting data 40 million times per second from each of its 150 million sensors, adding up to a total possible data load of around a petabyte per second. This data describes whether a detector was hit by a particle, and if so, what kind and when.

Currently, this data load is handled by the Worldwide LHC Computing Grid (WLCG), a network of systems spanning 167 sites across 42 countries and comprising a million CPU cores, along with an exabyte of storage. Much of this infrastructure is old, however, and much of it is running on old code – Python, in many cases over 20 years old. (Girone characterized this legacy code as “challenging to optimize.”)


“There will be a gap of resources”

Complicating matters, the LHC is far from static. It’s been almost 13 years since its inauguration, and the LHC is currently in “Run 2” of a roughly 30-year operation plan. Looming on the horizon is a new regime, the “High-Luminosity LHC,” that will dramatically increase the effective resolution (and data generation) of the behemoth machine beginning with Run 4 in 2028. “In a way,” Girone said, “it is like moving from looking for a needle in a haystack to producing many more needles.”

Somewhat more imminently, Run 3 (scheduled for 2022) will introduce substantial upgrades to the LHC “beauty” experiment (LHCb) and the A Large Ion Collider Experiment (ALICE), causing each of the projects to produce ten times more data.

Two of CERN’s major projects – ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) – expect that the HL-LHC upgrades will cause sixfold to tenfold increases in computing power requirements, along with threefold to fivefold increases in disk space requirements (already, the combined volume of LHC data is approximately an exabyte).

The resource gap, illustrated by CMS projections (blue lines) versus a 10- to 20-percent annual resource increase (dashed black lines).

The current pace of expansion is not sufficient to meet either of the anticipated needs.

“There will be a gap of resources,” Girone said. “This resource gap is motivating an ambitious program of R&D to modernize and optimize our software to adapt the code to hardware accelerators and high-performance computing, to reduce the storage footprint and to use more efficient techniques like AI and ML in the experiment workflows.”

To bridge the gap, CERN is looking to HPC for answers. Girone noted that supercomputers are expected to become ten times more powerful in the time it will take for the HL-LHC to become operational – and furthermore, that supercomputers are taking advantage of the AI, machine learning and heterogeneous architectures that CERN is quickly realizing will be crucial to its future operations. “The advent of heterogeneous hardware, that is used heavily in high-performance computing, has shaken also our landscape, and today all experiments are exploring GPUs for accelerated event reconstruction simulation,” Girone said, adding, “We believe that high-performance computing can play a critical role in the success of the HL-LHC.”

Supercomputers, of course, are already a part of CERN’s operations: Girone said that ATLAS, for instance, uses supercomputing for around 10 percent of its computing needs, stemming from a large number of diverse systems and facilities (CSCS, OLCF, ALCF, NERSC, TACC, LRZ, etc.). CMS, similarly, has used a high-energy physics resource provisioning service called HEPCloud (on which it once used 100K cores simultaneously) and CINECA’s Marconi system (peak usage of 22K cores).

The ATLAS projects’ computing use by type of resource as of 2018.

“The experiment progress at individual sites is good and very encouraging,” Girone said, “but you can also see that it still represents a small fraction of the one million-core operation of the WLCG. … If high-performance computing is going to make a serious dent in the resource gap, we need to expand the types of hardware we can use and increase the number of supercomputing sites.”


“An exascale project for an exascale problem”

Given the timeline for HL-LHC and its eventual needs, CERN sees strong promise in the exascale era. To that end, CERN launched a project last summer in collaboration with GÉANT (a major European research network), PRACE (the Partnership for Advanced Computing in Europe) and SKAO (the organization leading the Square Kilometer Array, which will be the largest radio telescope on Earth when completed). 

The project consists of a number of pillars, mostly centered around developing expertise in heterogeneous hardware and developing proofs of concept for benchmarking, data access, authorization and authentication. Girone called the collaboration “an exascale project for an exascale problem.” 

A screenshot of visualizations from the benchmarking suite.

Already, the collaboration has borne fruit: the researchers successfully ran a benchmarking suite for multiple architectures at scale in real-world HPC sites. CERN is also testing AI and machine learning techniques throughout its data pipeline and is working to modernize its data transfer network to reach 10 PB of data processing per day in order to demonstrate feasibility on the path to exascale.

Girone didn’t name names when it came to future collaborations and supercomputer integrations, but said that such partnerships were “very important” and that “engagement with high-performance computing is very important to the future of high-energy physics computing.” However, the host of the discussion, Matej Praprotnik, hinted that tests on some of the new and forthcoming EuroHPC systems may already be underway.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Organizations Partner to Rescue Petabytes of Data from the Arecibo Observatory

April 21, 2021

The Arecibo Observatory in Puerto Rico stood as the world’s largest single-aperture telescope for more than half a century, its grandiosity earning it a turn as a major filming location in the James Bond movie GoldenEy Read more…

MLPerf Issues New Inferencing Results, Adds Power Metrics, Nvidia Wins (Again)

April 21, 2021

MLPerf.org, the young ML benchmarking organization, today issued its third round of inferencing results (MLPerf Inference v1.0) intended to compare how well various systems and accelerators perform inferencing on a suite Read more…

Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation technology (WSE-2), which its says packs twice the performance Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

MLPerf Issues New Inferencing Results, Adds Power Metrics, Nvidia Wins (Again)

April 21, 2021

MLPerf.org, the young ML benchmarking organization, today issued its third round of inferencing results (MLPerf Inference v1.0) intended to compare how well var Read more…

Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation te Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire