The Role and Potential of CPUs in Deep Learning

By Sparsh Mittal

April 14, 2021

In this invited guest piece, Sparsh Mittal provides perspective on the role of the Central Processing Unit (CPU) for deep learning workloads in an increasingly diverse processor space, reviewing use cases where the performance of the CPU excels and noting some of the architectural changes and directions spurred by deep learning applications. The article serves as an introduction to a new survey research paper (written by Mittal et al) published this April in IEEE Transactions on Neural Networks and Learning Systems.

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enjoy. Even though accelerators may provide higher throughput than general-purpose computing systems (CPUs), there are several other metrics and usage scenarios on which CPUs are preferred or are superior. A recent survey paper I’ve coauthored with Poonam Rajput and Sreenivas Subramoney (A Survey of Deep Learning on CPUs: Opportunities and Co-optimizations) highlights the strengths of CPUs in DL, and identifies opportunities for further optimization.

CPU has its forte, and accelerator is not a panacea

Sparse DNNs are inefficient on massively parallel processors because of their irregular memory accesses and inability to leverage optimizations such as cache tiling and vectorization. Further, RNNs are difficult to parallelize due to the dependencies between the steps. Similarly, DNNs such as InceptionNet variants have filter shapes of 1×1, 3×3, 1×3, 3×1, etc., which lead to irregular memory accesses and variable-amount of parallelism across the layers. CPUs are more suitable for such applications with limited parallelism because of their advanced memory management techniques. For example, researchers from Rice University have shown that for fully connected networks over sparse datasets such as Amazon-670K, and Delicious-200K, the DL training problem can be modeled as a search problem. This allows replacing matrix multiplication operation with hash tables. Their technique on CPU provides higher performance than a TensorFlow-based implementation on GPU.

3D CNNs and even 2D CNNs with large batch-size require a massive amount of memory. Since CPU-managed hosts in the cloud and datacenter scenarios have much larger memory capacities than accelerators, running memory-hungry operations on CPUs is not merely attractive but often imperative. Accelerators such as TPU provide high throughput for large batch size; however, for applications requiring real-time inference, the use of large batch size is not preferred. At small batch sizes, CPUs generally provide competitive latency. There are a host of techniques that can be applied to further tune the DL applications on CPUs, for example, hardware-aware pruning, vectorization, cache tiling and approximate computing. Our survey paper summarizes many such techniques.

Across the board: From tiny wearables to large datacenters

IoT devices and wearables have tight power and area budgets, which precludes over-specialization. For example, a smartwatch chip cannot host separate accelerators for speech/audio/image/video processing. In smartphones running Android, the programming support for mobile GPU or DSP is not fully mature. In fact, on a typical mobile SoC, the theoretical peak performance of mobile CPUs equals that of mobile GPUs. Further, datacenters supporting web services such as social networks see a significant fluctuation in computing demand over time. CPUs can meet this variability in demand due to their high availability and efficiency for both DL and non-DL tasks. Finally, in extreme environments such as defense and medical, which require security certifications, CPUs are sometimes the only platform of choice.

Not missing the obvious: economy and ease of use

Accelerators require long design cycles and massive investment. Integrating them into existing ecosystems requires high costs and engineering work. By contrast, the hardware/software stack of CPUs is already well-established and understood. They can provide reasonable speedups on a broad range of applications. While large-scale companies have the resources to build and maintain their custom accelerators, CPUs (or GPUs) remain the most feasible platform for other companies.

Future outlook: brighter than you think

Going forward, merely increasing peak performance will not be sufficient; more revolutionary improvements are required to boost the performance of a broad range of DL applications, such as reinforcement learning and generative adversarial networks. Recent CPUs have begun to provide hardware support for low-precision computing. Once in-memory computing reaches maturity, the large caches of CPUs would turn into massive compute units. Development of open-source ISA such as RISC-V would further break the portability and proprietary barriers of accelerators.

The metrics of interest are numerous and varied, and so are the state-of-the-art DL models. We believe that instead of a “general-purpose processor versus accelerator” debate, the future will see a CPU-accelerator heterogeneous computing approach that brings together the best of both worlds.

About the Author

Dr. Sparsh Mittal is currently working as an assistant professor at IIT Roorkee, India. He received the B.Tech. degree from IIT, Roorkee, India and the Ph.D. degree from Iowa State University (ISU), USA. He has worked as a Post-Doctoral Research Associate at Oak Ridge National Lab (ORNL), USA and as an assistant professor at CSE, IIT Hyderabad. He was the graduating topper of his batch in B.Tech and his BTech project received the best project award. He has received a fellowship from ISU and a performance award from ORNL. He has published more than 90 papers at top venues. He is an associate editor of Elsevier’s Journal of Systems Architecture. He has given invited talks at ISC Conference at Germany, New York University, University of Michigan and Xilinx (Hyderabad).

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are many interesting stories, and only a few ever become headli Read more…

Quantum Tech Sector Hiring Stays Soft

June 13, 2024

New job announcements in the quantum tech sector declined again last month, according to an Quantum Economic Development Consortium (QED-C) report issued last week. “Globally, the number of new, public postings for Qu Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. A typical supercomputer lifecycle is about five to six years Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently king of accelerated computing) wins again, sweeping all nine Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research computing centers, national labs, federal agencies, and univ Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst firm TechInsights. Nvidia's GPU shipments in 2023 grew by more Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, Read more…

ASC24: The Battle, The Apps, and The Competitors

June 5, 2024

The ASC24 (Asia Supercomputer Community) Student Cluster Competition was one for the ages. More than 350 university teams worked for months in the preliminary competition to earn one of the 25 final competition slots. The winning teams... Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire