San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

By Tiffany Trader

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize access for its industrial end user program. Although the new Dell system is funded by the National Science Foundation to primarily serve academic researchers, SDSC came up with an innovative solution to provide cycles to its industry user community through the deployment of a purpose-built, dedicated Expanse rack, delivered as a service via Core Scientific’s Plexus software stack.

“Exposing SDSC’s Expanse supercomputer platform via Core Scientific’s Plexus software stack provides customers with a consumption-based HPC model that not only solves for on-premise infrastructure, but also has the ability to run HPC workloads in supercomputer centers as well as in the any of the four major public cloud providers — all from a single pane of glass,” according to Bellevue, Wash.-based Core Scientific, which builds software solutions for HPC, artificial intelligence and blockchain applications.

SDSC‘s Expanse supercomputer entered full production service in December 2020. Built by Dell, it consists of ~800 AMD 64-core Epyc Rome-based compute nodes with a 12 petabyte parallel file system and HDR InfiniBand. The system is organized into 13 SDSC Scalable Compute Units (SSCUs) — one SSCU per rack — with each comprising 56 standard nodes and four Nvidia V100-powered GPU nodes (Intel-based), connected with 100 GB/s HDR InfiniBand. (Additional system spec details at end.)

Expanse is the successor to Comet, which will be decommissioned this year. And like Comet, Expanse serves the so-called long tail of science users within the NSF community that have wide-ranging and diverse workload requirements.

“The new system brings a number of innovations over Comet, including composable systems and portal based access for scientific workflow support; one of the key features of Expanse is that it’s built on the scalable unit concept,” Ron Hawkins, director of industry relations at SDSC, told HPCwire.

The new Expanse supercomputer at the San Diego Supercomputer Center on the University of California San Diego campus. Image: Owen Stanley, SDSC/UC San Diego

The scalable unit design of Expanse naturally extended itself for SDSC’s industry program, Hawkins said.

Implementing this design at the rack-level makes it simple to bring in additional units as needed, Hawkins explained. With funding from UCSD, the supercomputer center added a dedicated, purpose-built SSCU to serve its industrial program. Because the additional scalable unit is financed by the university, the center can operate it 100 percent on behalf of industrial collaborators with the option to allocate idle capacity to SDSC users, UC San Diego campus researchers, or other science users or collaborators.

To transform this traditional on-prem supercomputer into a private cloud resource, SDSC turned to Core Scientific and the company’s Plexus software stack, which allows SDSC’s industry customers to take advantage of the infrastructure. As a portal to the SDSC resource, Plexus provides a similar function and purpose as the NSF XSEDE interface, but for industry users.

Core Scientific’s Plexus portal showing HPC applications. Source: Core Scientific.

SDSC’s implementation of Core Scientific’s Plexus portal supports multi-tenancy, as well as on-demand / consumption-based pricing. “We can allocate any size job from a single core up to the full capacity of the SSCU,” said Ian Ferreira, Core Scientific’s chief product officer of artificial intelligence.

Hawkins, who coordinates SDSC’s Industry Partners Program, said he expects a wide variety of user workloads. “With the high core count per node (128 cores), we expect that many users will have jobs that fit within a single node,” he said. “In some applications, such as genome analysis, users may run multiple independent analyses on multiple nodes (or via ‘packing’ jobs on a single node) for high throughput computing. We will have to gain some operational experience to understand what the typical job profile will be.”

The Expanse system is well-suited to both traditional HPC and data science kinds of workloads, Hawkins told HPCwire, and the Plexus portal supports both HPC stacks (Singularity, Slurm, LFS, PBS) as well as AI stacks (Docker, Kubernetes). “Scientists get a no-compromise environment to run their models as the lines between traditional HPC and data science/AI continue to blur,” Hawkins added.

Ron Hawkins

SDSC runs a long-standing industrial program that has strong ties to San Diego’s biosciences community, from large pharmaceutical companies to genomics startups. While the majority of program partners come from life sciences, SDSC also works with aerospace, automotive, oil and gas and engineering groups, as well as other companies doing commercial research. “They need the HPC resources, but the industrial program is really aimed at establishing collaborations where we can know leverage each other’s expertise,” said Hawkins.

“Core Scientific is our primary partner for helping us both attract new industrial users and serving the resource to those users via the Plexus platform with that single pane of glass,” he said. “We’ve been tracking that kind of core technology that’s in the Plexus stack now for a few years and we’re eager to put it into practice.”

As for wider potential for the Plexus portal to support scientific users, Hawkins said: “As we get this up and running and provide exposure to our user base, they’ll have the opportunity to take a look and see if it’s a fit for them. The additional scalable unit is focused primarily on our industrial users, but it’s open as well to higher ed and science users that would be outside the NSF sphere, so we can work with other nonprofit research institutes with other universities and foundations as well, so it could benefit the science community in that regard.”

For its part, Core Scientific sees potential in the academic research computing sector. “We’ve reached out to the NSF to say, what would the world look like if we could create a reserve of high performance computing, and aggregate all of that in the U.S., for educational reasons, not necessarily commercial,” said Ferreira. “We welcome the opportunity to create a plexus.org that is free for NSF researchers.”

“[It’s] like a strategic oil reserve, but an HPC reserve that can be deployed when we have the next COVID-type situation,” said Ferreira, describing what sounds a lot like a plan that’s already in motion: the National Strategic Computing Reserve (see our recent coverage).

Of course, HPC resources are too precious to be literally reserved (as in waiting idle), but they are subject to reprioritization; that’s exactly what happened in response to the COVID-19 pandemic on a grand scale, and it’s what happens on a lesser scale (usually satisfied by “discretionary allocations”) for all the usual disasters, seasonal storm, flood and flu modeling, for example. Cloud/HPC cycle brokering itself is not new. RStor, R-Systems, Parallel Works, Rescale, Nimbis Services and UberCloud all play in this space. Cycle Computing briefly offered such a service in its early days, before getting acquired by Microsoft.

Core Scientific says its Plexus AI and HPC platform is used by a number of major companies in industries including healthcare, manufacturing and telecommunications. The company is led by Kevin Turner, former COO of Microsoft (and previously CEO of Sam’s Club and CIO of Walmart). Core Scientific recently achieved AWS High Performance Computing Competency status. The company is also working with Hewlett Packard Enterprise (HPE) to deliver its software solutions in the new HPE GreenLake cloud services for HPC.

The SDSC Expanse Plexus portal is open and ready for use for industrial research and engineering users from across the U.S.

 

The Plexus dashboard. Source: Core Scientific


Expanse architecture:  The Dell system is organized into 13 SDSC Scalable Compute Units (SSCUs), each comprising 56 standard CPU nodes and four GPU nodes, connected with 100 GB/s HDR InfiniBand. Each standard CPU node has dual AMD Rome Epyc processors (64-cores each), 256GB of main memory, 1.6TB NVMe drive, and HDR 100 GB/s interconnect. Each GPU node has four Nvidia V100 GPUs with 32GB GPU memory and NVLink, dual Intel Xeon (6248) host processors (20-cores each), 384GB host memory, 1.6TB NVMe drive, and HDR 100 interconnect.  There is a total of 7,168 compute cores (not including GPU node host cores) and 16 V100 GPUs per SSCU. There is a 12PB “Performance Storage” system based on the Lustre parallel filesystem and a 7PB “Object Storage” system based on the Ceph storage platform. 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

Graphcore and its “Intelligent Processing Units” (IPUs) emerged from stealth in 2016 and launched its second-generation IPU in 2020. While the company has also launched its IPUs in a variety of form factors over the Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat for that approach), announced it was expanding into gate-based Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the power of Fugaku, the current top-ranked supercomputer in the wor Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 537899029

Running GROMACS on GPU instances

Comparing the performance of real applications across different Amazon Elastic Compute Cloud (Amazon EC2) instance types is the best way we’ve found for finding optimal configurations for HPC applications here at AWS. Read more…

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire