Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

By HPCwire Editorial Team

April 22, 2021

HPCwire recently announced our 2021 People to Watch and will be running featured interviews with these 14 thought leaders and HPC influencers in the coming weeks. First up we are happy to bring you our interview with Jim Keller, president and chief technology officer of Tenstorrent.

One of the top chip architects of our time, Keller has had an impactful career. He has held high-profile roles at AMD (where he designed the Zen cores that helped the company compete in datacenters once more), Tesla and Apple. Keller joined AI chip startup Tenstorrent earlier this year following two years as senior vice president of Intel’s silicon engineering group.

Hi Jim, congrats on your new position as CTO & President of Tenstorrent and being named an HPCwire Person to Watch for the second time! Tell us about your role at Tenstorrent, your areas of responsibility, and what drew you to the company.

Thank you for this opportunity.

As CTO, I’m working on new technology at Tenstorrent. Following our roadmap, we have a chip (Grayskull) currently starting production. We are powering up on our second-generation part and designing our 3rd and 4th generation of processors as we speak. I’m spending my time working on all of these parts and system designs around them.

As President, I’ve been working with our growing team on business strategy. We’ve gained significant traction with various companies, system builders and their customers, which we can now start translating into revenue.

I was the first investor at Tenstorrent. Ljubisa Bajic (Tenstorrent Founder and CEO) and I go way back. We worked together at AMD and I was always impressed by his approach to building AI silicon. He knows how GPUs work, how the software works, and he also knows the math behind AI, which is a rare combination. That’s why I was interested in investing with him.

Personally, I think the AI revolution is bigger than the Internet. Joining Tenstorrent is a great way for me to contribute to it, and so far it’s been super fun.

With so many startups engaged in designing and commercializing AI silicon, what sets Tenstorrent apart?

There are a few different things to consider. First, and it took us a while to realize this, you have to get right all the basics at a very deep level: memory, compute and network bandwidth together with programmability.

We’ve talked to a number of customers who are frustrated about the current state of AI silicon at its core.

The second thing I really like is the approach to the software. It begins with a unique compiler and software strategy, with hardware designed around it properly.

Some AI chip companies build chips with lots of GFLOPS or TFLOPS, and then they design the software later.

But Tenstorrent has always been different. We build hardware in collaboration with software right from the start.

The original software team consists of people who worked at Altera on FPGA compilers and CAD tools, which are both very complicated problems; we have people from AI and also people who work on HPC computers. There’s a big presence of talent in Toronto from companies and institutions like Intel, Nvidia, AMD and the University of Toronto.

How does the Tenstorrent approach differ in terms of architecture, and in combination of software and hardware. What is “Software 2.0” and how is it important?

What sets Tenstorrent apart is networking, data transformation and math engines of the software stack that work in sync with the hardware.

When you look at the Tenstorrent processor, it looks like an array of math processors, which is pretty common. There’s actually a real matrix multiplier and convolutional engine, so you don’t have to write programs to emulate that kind of math. The Tenstorrent engine does it naturally. It makes the number of programs you have to write for high performance lower because it runs the AI idioms of matrix multiply and convolution natively.

Then there are two units we call “Unpacker” and “Packer”, which are data transformation engines. Rather than writing programs to move bytes around, we have hardware that does it in a very straightforward way and presents a common data format into the math engine, which simplifies the programming.

And finally, networking is built in the Tenstorrent technology from the ground up. When all compute engines do their work, they have to send data somewhere – they send the data packet to the other engine.
We use the same on-chip and off-chip protocol to connect multiple chips together.

The first time I heard about Software 2.0 it was coined by Andrei Karpathy, who is the director of AI and autopilot at Tesla.

His idea was that we’re going from a world where you write programs to modify data to where you build neural networks and then program them with data to do the things you want. So modern computers are literally programmed with data.

It means a very different way of thinking about programming in many places where AI has had so much success. I think in the Software 2.0 future, 90% of computing will be done that way.

There will always be some computing that runs standard C programs but more and more of the actual cycles will be done in AI hardware running what we think of as Software 2.0.

What is the status of Grayskull and Wormhole and what markets and use cases do these chips address?

We’ve started our first production run of Grayskull, which we’re sampling to our customers. Our chip goes on a PCIe card and we have 75 W, 150 W and 300 W form factors. People can buy and plug them into their server infrastructure. We’ve released our inference software, and in a month or so, we are going to release training software. It’s built for a broad variety of AI applications, both training and inference.

Wormhole is our 2nd generation part that is going to take Tenstorrent to the next level because it has native networking between chips and lets us scale from a single chip to many chip systems just using our own network. This greatly improves bandwidth between chips and lowers the cost of building a system.

What excites you most about being a computer architect right now?

I’m sort of amazed by this but I’ve been building and designing computers for 40 years. The complexity of the computers that we build today is so far past what we did or even considered hard 40 years ago.

The reason we can build these computers is that modern tools and software have gotten so much better. You can think of an idea, write down RTL, synthesize it and build it into a chip with a really small team.

People at one point thought there’d be so many transistors and things would be so complicated we wouldn’t be able to build silicon because it’d be too expensive. But the opposite is true. Tenstorrent built Grayskull and Wormhole as a very small team of really great people. They took a very clever approach to modularity and design. We have a relatively small number of units that we put together to make a very complex chip. The amount of change I’ve seen in the last 5 or 10 years of computer design is probably greater than the previous 20.

We’ve been through a lot of revolutions. I think the AI revolution is going to be the biggest one so far.

Outside the professional sphere, what activities, hobbies or travel destinations do you enjoy in your free time?

I like to be active and fairly physical – I kitesurf, snowboard. I like to run and workout. I find it’s almost meditative, especially when I’m working on a hard problem. I get the problem loaded up in my head and I go run or snowboard for four hours. Somehow or other, it sorts itself out.

I like to travel. I went to Egypt with my kids a couple of years ago, it was great. I went to Serbia last year, we had a really great time there before Serbia got shut down due to the pandemic. I often go to Hawaii to surf, and I really enjoy the beach. The last year has been tough on travel so we’ll see about next year.

Keller is one of 14 HPCwire People to Watch for 2021. You can read the interviews with the other honorees at this link.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire