Quantum Research: NTT Research-Tokyo Tech Tackle CIM Application Development

By John Russell

April 27, 2021

While most of the attention on quantum computing currently tracks gate-based approaches, there has also been steady progress with Coherent Ising Machine (CIM) systems, which are essentially analog systems that seek to leverage quantum effects. It is the approach D-Wave uses. However, unlike the semiconductor-based superconducting technology that D-Wave employs, other technologies including optical approaches to CIM are possible and also rapidly developing.

Today, NTT Research and the Tokyo Institute of Technology announced an effort to collaborate on developing applications for CIM systems that highlights recent CIM progress and aspirations. NTT Research is a Sunnyvale, CA-based division of Japan’s telecom giant NTT’s R&D Lab. Its Physics and Informatics (PHI) Lab director, Yoshihisa Yamamoto, is a prominent CIM researcher with ties to Tokyo Tech and Stanford and NTT.

The focus of the new collaboration’s is on drug discovery and compressed sensing applications. As described in today’s official announcement, “[The] two agreements, signed in 2020, call for collaboration between NTT Research’s Physics & Informatics (PHI) Lab and independent research groups in Tokyo Tech’s School of Computing, directed by Yukata Akiyama and Toru Aonishi. NTT Research will lead the five-year project, which will involve approximately ten researchers working in Tokyo and Sunnyvale.” This agreement follows an NTT Research agreement announced in January with Caltech to develop and demonstrate “the world’s fastest CIM.”

It’s worth noting that NTT Research has ambitious goals:

“As part of its long-range goal to radically redesign artificial computers, both classical and quantum, the NTT Research PHI Lab has already established joint research agreements with seven universities, one government agency and one quantum computing software company. The other institutions of higher education are Cornell University, Massachusetts Institute of Technology (MIT), Stanford University, California Institute of Technology, Swinburne University of Technology, the University of Michigan and the University of Notre Dame. The government entity is NASA Ames Research Center, and the private company is 1QBit. In January 2021, NTT Research entered a second agreement with Caltech to develop an extremely fast, miniaturized CIM. The PHI Lab’s research partners include more than a dozen of the world’s leading quantum physicists. In addition to its PHI Lab, NTT Research has two other divisions: its Cryptography & Information Security (CIS) Lab and Medical & Health Informatics (MEI) Lab.”

The CIM approach to quantum computing is hardly new. In recent years, work to implement CIMs with optical technology has ramped up significantly. Here’s a broader CIM overview taken from a 2019 Nature[i] paper.

“To speed up calculation time compared to digital hardware, different non-von Neumann architectures have been proposed that attempt to solve optimization problems by mapping them to Ising models. Finding the optimal solution then becomes equivalent to finding the ground state of the Ising model, which is implemented with networks of coupled artificial Ising spins that can be realized with various physical systems, e.g. Josephson junctions, trapped ions, or optical states. The energy function of these so-called Ising machines is proportional to the Ising Hamiltonian, so that they will naturally evolve to the ground state of the Ising model and thus to the optimal solution. As the evolution to the ground state typically occurs on very fast timescales, Ising machines promise a considerable speed up over conventional algorithms in finding solutions to optimization problems, which will have significant implications for various important areas such as finance, pharmaceutics, logistics, or machine learning.”

As noted by Yamamoto in today’s announcement, much of the prior optically-based CIM work focused on understanding how quantum oscillator networks solve general combinatorial optimization problems. “Through this new application-oriented work undertaken in collaboration with Professors Akiyama and Aonishi, we believe that we will be able to explore new ways to use the networks by better understanding the requirements of a CIM,” said Yamamoto in the announcement. (For a visual representation of how a CIM solves a combinatorial optimization problem, see this video from the MIT’s Lincoln Laboratory.)

“The near-term goals in this joint research include formulating the essential part of the intensive computation required for a CIM to screen drug candidate compounds via combining their functional fragments and developing a CIM-based L0 norm reconstruction algorithm of distorted images. (The L0 norm relates to non-zero elements in a matrix.) Broader expectations are to demonstrate the advantages of a CIM and its related technology in addressing real-world problems and to explore new ways of computing,” according to NTT Research.

For more information see Yamamoto and colleagues’ paper (Coherent Ising machines—Quantum optics and neural network Perspectives) published in AIP last fall.

Link to press release: https://ntt-research.com/ntt-research-and-tokyo-institute-of-technology-target-two-applications-for-cim/

[i]  A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems, 2019, https://www.nature.com/articles/s41467-019-11484-3

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire