NWChemEx: Computational Chemistry Code for the Exascale Era

By Linda Barney

April 29, 2021

A team working on biofuel research is rewriting the decades-old NWChem software program for the exascale era. The new software, NWChemEx, will enable computational chemistry software to effectively run on exascale supercomputers. The team, part of Argonne National Laboratory’s Early Science Program (ESP), estimates that the future Argonne Aurora supercomputer, along with the new NWChemEx algorithms, will provide up to a 1,000x increase in the size of the chemical systems that can be studied.

Distinguished Professor Theresa Windus, Ames Laboratory and Iowa State University, is the principal investigator on the project. Windus states, “One of the goals of our research is to find more accurate information about chemical systems to aid in developing new methods for converting biomass into biofuels. When the Aurora supercomputer comes online at Argonne, it will be one of the largest supercomputers available. Running computer simulations of our biofuel research on Aurora using the NWChemEx software will allow the team to investigate larger molecular systems and perform deeper exploration of the energy landscape for molecules and materials. That additional knowledge provides a better understanding of the fundamental chemical reactions and their properties.”

In addition to Windus, the research team involves a broad spectrum of expertise located at Ames Laboratory, Argonne National Laboratory, Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and Virginia Tech, and frequent collaborations with Intel, AMD, HPE and Nvidia.

Updating NWChem code for Exascale computing

NWChem is a widely used open source computational chemistry package that includes both quantum chemical and molecular dynamics functionality. However, the NWChem code was designed for computer architectures that no longer exist. NWChemEx is a complete rewrite of the software – it’s modularized and flexible from its initial design and uses the power of C++ – enabling the team to move away from the megalithic design pattern that’s plagued quantum chemistry since the 70s. A primary focus of NWChemEx is designing the code so it runs on graphic processing units (GPUs) and uses dynamic methods to shift computational work to optimize performance.

“This change lets us develop methods to optimize the code over time and not force the code to run on a specific implementation. In terms of optimization, we are enabling different levels of parallelization within and across tensor contraction expressions. This allows us to tune the parallelization strategy to the specific execution,” states Sriram Krishnamoorthy, a laboratory fellow and computer scientist at Pacific Northwest National Laboratory. The change will also enable NWChemEx to run on the Intel Ponte Vecchio GPU units that will be incorporated in Aurora.

The key points are modernization of the Density Function Theory (DFT) code that is widely used in quantum chemistry, and the Coupled Cluster (CC) theory that is used to access the high accuracy required for predictive chemistry. The team is focused on implementing reduced scaling chemistry algorithms that challenge implementation on high performance, heterogeneous hardware due to nonuniform sparsity in these methods.

David William-Young, a research scientist at Lawrence Berkeley National Laboratory, states, “To aid in the implementation, the team uses modularization of the algorithmic components (grid/batch generation, load balancing, local work drivers, reduction, etc.), so they can be swapped and sandboxed individually to rapidly test new ideas and architecture-specific implementations without interfering with other components. The module approach opens the door for reuse of software written for one purpose in other parts of NWChemEx.”

Resolving computational issues in NWChemEx

“New exascale hardware requires a new software environment. The team is modifying the code to keep up with all the changes in hardware architecture by adapting to a new and unifying programming model – oneAPI. The knowledge gained from the NWChemEx project can be used and shared when Aurora is operational,” states Abhishek Bagusetty, Aurora Early Science Program Postdoctoral Appointee, Argonne Leadership Computing Facility (ALCF).

ALCF is a U.S. Department of Energy (DOE) Office of Science User Facility located at Argonne National Laboratory. The ALCF team works with researchers to help enable breakthroughs in science and engineering by providing supercomputing resources and expertise to the research community.

“The team is working to resolve issues such as load-balancing occurring on the Oak Ridge National Laboratory Summit supercomputer in preparation for Aurora. Methods used to resolve communication and load balancing will apply outside of the NWChemEx code,” indicates Ajay Panyala, computer scientist at Pacific Northwest National Laboratory.

Using NWChemEx to find catalytic materials for conversion of biomass into biofuels

The development of advanced biofuels is driven by both energy security and climate change considerations. The Department of Energy (DOE) has an advanced biofuels program to develop fuels that can use the existing infrastructure and replace existing fuels with biofuels on a gallon-for-gallon basis. Windus states, “Producing high-quality biofuels in a sustainable and economically competitive way is technically challenging, especially in a changing global climate. The NWChemEx project directly addresses one of DOE’s priority goals to develop high-performance computational models demonstrating that biomass can be a viable, sustainable feedstock for the production of biofuels and other bioproducts. Of particular interest in this project is the prediction of specific, selective and low-temperature catalytic conversion of biomass to fuels and other products.”

Zeolites, such as H-ZSM-5, offer great promise for the catalytic conversion of renewable biomass-derived alcohols into fuels and chemicals. Compared to metal oxides with diverse surface and acid properties, acidic zeolites are solid structures that have relatively well-defined and uniform acid site structures. This makes it easy to perform rigorous kinetic and theoretical investigations of the effect of acid strength and solvation environment and confinement on the chemical reaction energies. Although there have been a number of prior atomic-scale computational studies of these systems, unraveling the true complexity of the conversion process and identifying means of achieving conversions at lower temperatures and pressures is an unsolved problem.

To illustrate the capability of NWChemEx for chemical reactions, the project will examine a number of elementary chemical transformations that have been postulated for the conversion of propanol to propene in the H-ZSM-5 zeolite (basic unit cell: Si96O192). The team will run calculations using computer simulations to predict the binding energy of water and propanol and their reactions in the zeolite cavity to help identify appropriate biofuels.

“By running the millions of simulations on Aurora, and then identifying a smaller subset of possible chemical solutions, the task of conducting physical experiments will be facilitated and therefore speed the discovery of real solutions,” states Windus.

Figure 1. Example of H-ZSM5 with 2-propanol and water. Image curtesy of Peter Sushko (PNNL).

Intel solutions used in developing NWChemEx

NWChemEx uses Data Parallel C++ (DPC++) as one of its programming models. DPC++ is a cross-architecture programming language, based on C++ and SYCL and part of oneAPI – an industry initiative to unify and simplify application development across diverse computing architectures. To facilitate porting of any existing CUDA code, Intel’s DPC++ Compatibility Tool helps migrate that code to create new DPC++ code. Further performance analysis and tuning uses Intel VTune Profiler and Intel Advisor. The compilers (C, C++, Fortran), Intel oneAPI Math Kernel Library (oneMKL) and Intel oneAPI DPC++ Library (oneDPL) – all part of Intel’s oneAPI Base Toolkit, are also employed.

Future benefits of NWChemEx and exascale supercomputers

The impact of the team’s biofuel research and rewriting NWChemEx software will have benefits outside the Argonne ESP project. “Chemistry simulations need to be able to model more complex, realistic systems. With current hardware and software, we can only simulate simplistic systems by removing impurities, getting rid of defects, and simplifying the solvent environments. In the future, researchers must be able to do real-life simulations that bring in all the complexities of the chemical system to have confidence the research results show the real-life issues, and the research findings will have comparable results to experimental conditions,” states Windus.

“Quantum chemistry research methods have become ubiquitous in hard science and engineering and are used in a variety of fields. What makes molecular dynamics and quantum chemistry tools such as NWChemEx so valuable is that they provide predictive results that are accurate when compared with many other research algorithms. Tools such as NWChemEx and access to hardware such as the future Argonne Aurora supercomputer will be critical to finding future solutions,” states Eric Bylaska, chemist at Pacific Northwest National Laboratory.

NWChemEx research was supported by the Exascale Computing Project, a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Linda Barney is the founder and owner of Barney and Associates, a technical/marketing writing, training, and web design firm in Beaverton, Oregon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire