IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

By Tiffany Trader

May 6, 2021

IBM Research today announced the successful prototyping of the world’s first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm bulk wafer. With ~50 billion transistors, the chip will enable major leaps in performance and energy efficiency for the next decade, according to IBM. The company’s research arm is projecting 45 percent higher performance or 75 percent lower energy use for its 2m node compared with today’s leading 7nm chips. (Similar performance gains were cited for IBM’s 5nm node, comprising ~30 billion transistors, announced in 2017.)

The target date for 2nm foundry technology to go into production is late 2024, said Mukesh Khare, vice president at IBM Research, in a pre-briefing held earlier this week. He emphasized the importance of having a partner ecosystem that leverages the platform.

Key technology enablers highlighted by IBM Research are:

•  Bottom dielectric isolation – providing the reduction in leakage current that is needed to scale gate length to 12nm.
•  A second generation inner spacer dry process for precise gate control.
•  Extreme ultraviolet (EUV) lithography enabled in the front-end to produce variable nanosheet widths from 15nm to 70nm.
•  A multi-threshold-voltage (Multi-Vt) scheme – enabling threshold voltage control for applications that span from low-power mobile to HPC server chips.

IBM Research has been using EUV since its 7nm node, announced in 2015, but has now enabled EUV patterning at the front-end to create structures for the nanosheet and the gate.

“All the critical layers for the 2nm technology will use single exposure EUV, and that will have significant value and benefit, both in terms of cycle time reduction and defect reduction,” said Khare.

Khare said all these nanosheet enhancements are essential to the 2nm node technology, and he stated that these innovations are what differentiate IBM’s 2nm node from competing technologies, for example TSMC’s 3nm process.

As shown on the graphic below, the node’s transistor has three layers of nanosheet, and each sheet has a width of ~40nm and a height of ~5nm. The pitch is ~44nm, and gate length ~12nm.

Courtesy IBM Research

The 2nm node number does not refer to a specific physical feature on the die. While in past decades, a semiconductor node name would relate to a given feature of the chip, this relationship has dissolved in the era of single-digit process nodes.

Khare described the current naming convention as “a metric that’s a combination of many parameters, including power, performance and density, to enable appropriate value and function that you can put on the chip every two-to-two-and-a-half years.”

Partner focused

IBM highlighted its partner ecosystem, which includes newly added R&D partner Intel, as well as Samsung (which is manufacturing IBM’s upcoming 7nm Power10 chips).

“We expect all our partners to benefit from this [2nm technology] innovation,” said Khare. “We’re very proud of our partnership with Intel and Samsung; that said, Samsung is our manufacturing partner and we’re very proud to have them manufacture our 7nm products.”

IBM has been shifting to a collaborative IP model, where it commercializes its research for partner use rather than (or in addition to) prioritizing its use for IBM’s own products. Arvind Krishna, who ran IBM Research when the 5nm and 7nm nodes were announced (in 2015 and 2017 respectively), is now the company’s CEO.

“The IBM innovation reflected in this new 2nm chip is essential to the entire semiconductor and IT industry,” said Darío Gil, senior vice president and director of IBM Research in a statement. “It is the product of IBM’s approach of taking on hard tech challenges and a demonstration of how breakthroughs can result from sustained investments and a collaborative R&D ecosystem approach.”

Khare echoed similar sentiments. “We’re very proud of being able to build an innovation platform for semiconductor,” he said, “and we’re very proud to be able to bring these world leaders in semiconductor manufacturing, equipment, EDA, materials, all of these companies, to this platform.”

Asked what’s next after 2nm and whether semiconductor miniaturization has hit a wall, Khare gave a nod to future progress, but provided no details. “With all the partners we have in Albany with New York State and NY CREATES, and the amount talent and energy we have, I don’t think there’s a wall that we can’t break through,” he said. “There are more breakthroughs in the pipeline and we will be sharing more as the technology matures.”

The 2nm prototype technology is being developed, manufactured and tested at the IBM Research facility in Albany, NY, which maintains 100,000 square foot of clean room space with 24/7 operation. Since selling its chip manufacturing business to GlobalFoundries in 2015, IBM relies on partners to manufacture production parts for its Power and z platforms.

IBM’s 7nm process technology, manufactured by Samsung, is scheduled to debut in Power10 later this year, six years after the test chip was announced.

IBM Research’s Albany facility, with SUNY Poly. Courtesy of IBM Research.
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire